Subthreshold amyloid and its biological and clinical meaning: Long way ahead.

Neurology

From the Multimodal Imaging Group (G.N.B.), Department of Nuclear Medicine, University Hospital Cologne, Germany; Cognitive Neuroscience (H.I.L.J.), Faculty of Psychology and Neuroscience, and School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Alzheimer Centre Limburg, Maastricht University, the Netherlands; and Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Harvard Medical School, Massachusetts General Hospital, Boston.

Published: July 2019

The development of in vivo imaging of the pathologic hallmark of Alzheimer disease (AD), β-amyloid (Aβ), altered the framing of its pathophysiology and formulation of inclusion criteria for clinical trials. Recent evidence suggests that in vivo measures of Aβ deposition below a threshold indicative of Aβ positivity carry critical information on future cognitive decline and accumulation of AD pathology, potentially already at a younger age. Here, we integrate the existing literature on histopathology of Aβ and its convergence and divergence with in vivo Aβ imaging. The evidence presented amounts to a reconceptualization, in which we advocate for a closer look into Aβ accumulation rates in earlier life, the factors that promote accumulation, comparative studies with different markers of Aβ, and longitudinal designs to elucidate when AD pathology rises and how it shifts from benign to malignant stages that ultimately define AD. These efforts open a new window of opportunity for disease-modifying interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000007747DOI Listing

Publication Analysis

Top Keywords

7
subthreshold amyloid
4
amyloid biological
4
biological clinical
4
clinical meaning
4
meaning long
4
long ahead
4
ahead development
4
development vivo
4
vivo imaging
4

Similar Publications

The Saccharomyces cerevisiae Yta7 is a chromatin remodeler harboring a histone-interacting bromodomain (BRD) and two AAA+ modules. It is not well understood how Yta7 recognizes the histone H3 tail to promote nucleosome disassembly for DNA replication or RNA transcription. By cryo-EM analysis, here we show that Yta7 assembles a three-tiered hexamer with a top BRD tier, a middle AAA1 tier, and a bottom AAA2 tier.

View Article and Find Full Text PDF

The interest in the A-stage of the adsorption/bio-oxidation (A/B) process has considerably increased due to its capacity of carbon redirection to the solids stream. Induced by its flexible and compact design, the Alternating Activated Adsorption (AAA) was recently implemented in full-scale as an alternative A-stage system. However, the literature on such a system is scarce.

View Article and Find Full Text PDF

Two-Step Activation Mechanism of the ClpB Disaggregase for Sequential Substrate Threading by the Main ATPase Motor.

Cell Rep

June 2019

Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK. Electronic address:

AAA+ proteins form asymmetric hexameric rings that hydrolyze ATP and thread substrate proteins through a central channel via mobile substrate-binding pore loops. Understanding how ATPase and threading activities are regulated and intertwined is key to understanding the AAA+ protein mechanism. We studied the disaggregase ClpB, which contains tandem ATPase domains (AAA1, AAA2) and shifts between low and high ATPase and threading activities.

View Article and Find Full Text PDF

The CryoEM structure of the ribosome maturation factor Rea1.

Elife

November 2018

Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.

The biogenesis of 60S ribosomal subunits is initiated in the nucleus where rRNAs and proteins form pre-60S particles. These pre-60S particles mature by transiently interacting with various assembly factors. The ~5000 amino-acid AAA+ ATPase Rea1 (or Midasin) generates force to mechanically remove assembly factors from pre-60S particles, which promotes their export to the cytosol.

View Article and Find Full Text PDF

ClpB, a bacterial homologue of heat shock protein 104 (Hsp104), can disentangle aggregated proteins with the help of the DnaK, a bacterial Hsp70, and its co-factors. As a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA), ClpB forms a hexameric ring structure, with each protomer containing two AAA modules, AAA1 and AAA2. A long coiled-coil middle domain (MD) is present in the C-terminal region of the AAA1 and surrounds the main body of the ring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!