Broadband Absorption Tailoring of SiO/Cu/ITO Arrays Based on Hybrid Coupled Resonance Mode.

Nanomaterials (Basel)

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Published: June 2019

Sub-wavelength artificial photonic structures can be introduced to tailor and modulate the spectrum of materials, thus expanding the optical applications of these materials. On the basis of SiO/Cu/ITO arrays, a hybrid coupled resonance (HCR) mechanism, including the epsilon-near-zero (ENZ) mode of ITO, local surface plasmon resonance (LSPR) mode and the microstructural gap resonance (GR) mode, was proposed and researched by systematically regulating the array period and layer thickness. The optical absorptions of the arrays were simulated under different conditions by the finite-difference time-domain (FDTD) method. ITO films were prepared and characterized to verify the existence of ENZ mode and Mie theory was used to describe the LSPR mode. The cross-sectional electric field distribution was analyzed while SiO/Cu/ITO multilayers were also fabricated, of which absorption was measured and calculated by Macleod simulation to prove the existence of GR and LSPR mode. Finally, the broad-band tailoring of optical absorption peaks from 673 nm to 1873 nm with the intensities from 1.8 to 0.41 was realized, which expands the applications of ITO-based plasmonic metamaterials in the near infrared (NIR) region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630435PMC
http://dx.doi.org/10.3390/nano9060852DOI Listing

Publication Analysis

Top Keywords

lspr mode
12
sio/cu/ito arrays
8
hybrid coupled
8
coupled resonance
8
resonance mode
8
enz mode
8
mode
7
broadband absorption
4
absorption tailoring
4
tailoring sio/cu/ito
4

Similar Publications

The realization of higher coupling strengths between coupled resonant modes enables exploration of compelling phenomena in diverse fields of physics and chemistry. In this study, we focus on the modal coupling between localized surface plasmon resonance (LSPR) of Au nanoparticles (Au-NPs) and Fabry-Pérot mode (p-NiO/Au film). The effects of nanoparticle size, projected surface coverage (PSC), interparticle distance (IPD), and arrangement to the coupling strength between the two modes are theoretically investigated using finite-difference time-domain (FDTD) method.

View Article and Find Full Text PDF

Hybrid plasmonic metamaterials: towards enhanced ultra broadband and wide-angle solar absorption for energy harvesting.

Phys Chem Chem Phys

December 2024

Department of Electrical Engineering, Faculty of Engineering, University of Zabol, 9861335856 Zabol, Iran.

In this paper, we have investigated a hybrid metamaterial seven-layer solar absorber. The absorber has remarkable characteristics, including ultra-broadband perfect absorption capability, near-perfect absorption at wide angles, and insensitivity to polarization. The structure exhibits an average absorption of 98.

View Article and Find Full Text PDF

Antibody testing for virus aids diagnosis, promotes vaccination and development, and evaluates antibody treatment efficacy. Hence, it is essential to examine and monitor antibody levels for accurate disease diagnosis and prevention. Lateral Flow Immunoassay (LFIA) is a technique that is known for its simplicity and speed, making it a popular choice for immediate detection.

View Article and Find Full Text PDF

Light-matter interactions between plasmonic and excitonic modes have attracted considerable interest in recent years. A major challenge in achieving strong coupling is the identification of suitable metallic nanostructures that combine tight field confinement with sufficiently low losses. Here, we report on a room-temperature study on the interaction of tungsten disulfide (WS) monolayer excitons with a hybrid plasmon polariton (HPP) mode supported by nanogroove grating structures milled into single-crystalline silver flakes.

View Article and Find Full Text PDF

Three-dimensional surface lattice plasmon resonance effect from plasmonic inclined nanostructures via one-step stencil lithography.

Nanophotonics

March 2024

Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.

Plasmonic nanostructures allow the manipulation and confinement of optical fields on the sub-wavelength scale. The local field enhancement and environmentally sensitive resonance characteristics provided by these nanostructures are of high importance for biological and chemical sensing. Recently, surface lattice plasmon resonance (SLR) research has attracted much interest because of its superior quality factor (-factor) compared to that of localized surface plasmon resonances (LSPR), which is facilitated by resonant plasmonic mode coupling between individual nanostructures over a large area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!