Molecular interactions between Neisseria meningitidis and its human host.

Cell Microbiol

Inserm, Institut Necker Enfants Malades, U1151, Paris, France.

Published: November 2019

Neisseria meningitidis is a Gram-negative bacterium that asymptomatically colonises the nasopharynx of humans. For an unknown reason, N. meningitidis can cross the nasopharyngeal barrier and invade the bloodstream where it becomes one of the most harmful extracellular bacterial pathogen. This infectious cycle involves the colonisation of two different environments. (a) In the nasopharynx, N. meningitidis grow on the top of mucus-producing epithelial cells surrounded by a complex microbiota. To survive and grow in this challenging environment, the meningococcus expresses specific virulence factors such as polymorphic toxins and MDAΦ. (b) Meningococci have the ability to survive in the extra cellular fluids including blood and cerebrospinal fluid. The interaction of N. meningitidis with human endothelial cells leads to the formation of typical microcolonies that extend overtime and promote vascular injury, disseminated intravascular coagulation, and acute inflammation. In this review, we will focus on the interplay between N. meningitidis and these two different niches at the cellular and molecular level and discuss the use of inhibitors of piliation as a potent therapeutic approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899865PMC
http://dx.doi.org/10.1111/cmi.13063DOI Listing

Publication Analysis

Top Keywords

neisseria meningitidis
8
molecular interactions
4
interactions neisseria
4
meningitidis human
4
human host
4
host neisseria
4
meningitidis gram-negative
4
gram-negative bacterium
4
bacterium asymptomatically
4
asymptomatically colonises
4

Similar Publications

Erratum: Meningococcal Surveillance Australia: Reporting period 1 April to 30 June 2024.

Commun Dis Intell (2018)

January 2025

World Health Organisation Collaborating Centre for STI and AMR, Sydney and Neisseria Reference Laboratory, Department of Microbiology, NSW Health Pathology, The Prince of Wales Hospital, Randwick, 2031, NSW Australia.

Erratum to 2024;48. (doi: 10.33321/cdi.

View Article and Find Full Text PDF

Objectives: is a significant pathogen causing invasive meningococcal disease, posing clinical and public health concerns worldwide. This study aimed to investigate the genetic characteristics of clinical isolates at Okayama University Hospital in Japan.

Methods: Between 2018 and 2023, five clinical strains were isolated, of which three were subjected to the antimicrobial susceptibility testing and whole genetic analysis using MiSeq platform (Illumina, San Diego, CA, USA).

View Article and Find Full Text PDF

Background: The prevalence of meningococcal carriage and serogroup distribution is crucial for assessing the epidemiology of invasive meningococcal disease, forecasting outbreaks and formulating potential immunization strategies. Following the meningococcal carriage studies conducted in Turkey in 2016 and 2018, we planned to re-evaluate meningococcal carriage in children, adolescents and young adults during the COVID-19 pandemic period.

Methods: In the MENINGO-CARR-3 study, we collected nasopharyngeal samples from 1585 participants 0-24 years of age, across 9 different centers in Turkey.

View Article and Find Full Text PDF

Neisseria gonorrhoeae, which causes the sexually transmitted infection gonorrhea and Neisseria meningitidis, a leading cause of bacterial meningitis and septicemia, are closely related human-restricted pathogens that inhabit distinct primary mucosal niches. While successful vaccines against invasive meningococcal disease have been available for decades, the rapid rise in antibiotic resistance has led to an urgent need to develop an effective gonococcal vaccine. Several surface antigens are shared among these two pathogens, making cross-species protection an exciting prospect.

View Article and Find Full Text PDF

Adenovirus-based therapies have encountered significant challenges due to host immunity, particularly from pre-existing antibodies. Many trials have struggled to evade antibody response; however, the efficiency of these efforts was limited by the diversity of antibody Fv-region recognizing multiple amino acid sequences. In this study, we developed an antibody-evading adenovirus vector by encoding a plasma-rich protein transferrin-binding domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!