Lanthanides were previously thought to be biologically inert owing to their low solubility; however, they have recently been shown to strongly impact the metabolism of methylotrophic bacteria. Leading efforts in this emergent field have demonstrated far-reaching impacts of lanthanide metabolism in biology; from the identification of novel roles of enzymes and pathways dependent on lanthanide-chemistry to the control of transcriptional regulatory networks to the modification of microbial community interactions. Even further, the recent discovery of lanthanide-dependent enzymes associated with multi-carbon metabolism in both methylotrophs and non-methylotrophs alike suggests that lanthanide biochemistry may be more widespread than initially thought. Current efforts aim to understand how lanthanide chemistry and lanthanide-dependent enzymes affect numerous ecosystems and metabolic functions. These efforts will likely have a profound impact on biotechnological processes involving methylotrophic communities and the biologically mediated recovery of these critical metals from a variety of waste streams while redefining our understanding of a fundamental set of metals in biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21775/cimb.033.101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!