Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bile duct epithelial cells, also known as cholangiocytes, regulate the composition of bile and its flow. Acquired, congenital and genetic dysfunctions in these cells give rise to a set of diverse and complex diseases, often of unknown aetiology, called cholangiopathies. New knowledge has been steadily acquired about genetic and congenital cholangiopathies, and this has led to a better understanding of the mechanisms of acquired cholangiopathies. This Review focuses on findings from studies on Alagille syndrome, polycystic liver diseases, fibropolycystic liver diseases (Caroli disease and congenital hepatic fibrosis) and cystic fibrosis-related liver disease. In particular, knowledge on the role of Notch signalling in biliary repair and tubulogenesis has been advanced by work on Alagille syndrome, and investigations in polycystic liver diseases have highlighted the role of primary cilia in biliary pathophysiology and the concept of biliary angiogenic signalling and its role in cyst growth and biliary repair. In fibropolycystic liver disease, research has shown that loss of fibrocystin generates a signalling cascade that increases β-catenin signalling, activates the NOD-, LRR- and pyrin domain-containing 3 inflammasome, and promotes production of IL-1β and other chemokines that attract macrophages and orchestrate the process of pericystic and portal fibrosis, which are the main mechanisms of progression in cholangiopathies. In cystic fibrosis-related liver disease, lack of cystic fibrosis transmembrane conductance regulator increases the sensitivity of epithelial Toll-like receptor 4 that sustains the secretion of nuclear factor-κB-dependent cytokines and peribiliary inflammation in response to gut-derived products, providing a model for primary sclerosing cholangitis. These signalling mechanisms may be targeted therapeutically and they offer a possibility for the development of novel treatments for acquired cholangiopathies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6661007 | PMC |
http://dx.doi.org/10.1038/s41575-019-0156-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!