A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Slow-gamma frequencies are optimally guarded against effects of neurodegenerative diseases and traumatic brain injuries. | LitMetric

We introduce a computational model for the cellular level effects of firing rate filtering due to the major forms of neuronal injury, including demyelination and axonal swellings. Based upon experimental and computational observations, we posit simple phenomenological input/output rules describing spike train distortions and demonstrate that slow-gamma frequencies in the 38-41 Hz range emerge as the most robust to injury. Our signal-processing model allows us to derive firing rate filters at the cellular level for impaired neural activity with minimal assumptions. Specifically, we model eight experimentally observed spike train transformations by discrete-time filters, including those associated with increasing refractoriness and intermittent blockage. Continuous counterparts for the filters are also obtained by approximating neuronal firing rates from spike trains convolved with causal and Gaussian kernels. The proposed signal processing framework, which is robust to model parameter calibration, is an abstraction of the major cellular-level pathologies associated with neurodegenerative diseases and traumatic brain injuries that affect spike train propagation and impair neuronal network functionality. Our filters are well aligned with the spectrum of dynamic memory fields including working memory, visual consciousness, and other higher cognitive functions that operate in a frequency band that is - at a single cell level - optimally guarded against common types of pathological effects. In contrast, higher-frequency neural encoding, such as is observed with short-term memory, are susceptible to neurodegeneration and injury.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10827-019-00714-8DOI Listing

Publication Analysis

Top Keywords

spike train
12
slow-gamma frequencies
8
optimally guarded
8
neurodegenerative diseases
8
diseases traumatic
8
traumatic brain
8
brain injuries
8
cellular level
8
firing rate
8
frequencies optimally
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!