By screening a collection of Fusarium spp. for the presence of dsRNA, the Fusarium redolens strain A63-1 was found harboring a pattern of multiple dsRNA bands when analyzed by agarose gel electrophoresis. Using NextSeq Illumina sequencing, the full sequences of eight dsRNA molecules were determined, compared to databases, and gathered into a new viral genome. This novel virus shares similarities with mycoviruses that were recently grouped in the proposed family "Polymycoviridae". Hence, the name "Fusarium redolens polymycovirus 1" is proposed for this virus. Each viral dsRNA contains only one ORF, except dsRNA 7, which has an additional one. Based on amino acid sequence similarities, the functions of the proteins encoded by dsRNA 1-4 can be hypothesized. On the other hand, the putative proteins encoded by dsRNA 5-8 exhibit no relevant homology to known proteins. In this report, the full genome sequence of this new virus is presented along with a primary bioinformatics analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00705-019-04301-1 | DOI Listing |
Cytotechnology
April 2025
Department of Genetics, Osmania University, Hyderabad, Telangana State India.
Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect.
View Article and Find Full Text PDFOpen Res Eur
January 2025
Heidelberger Institut für Global Health, Universitätsklinikum Heidelberg, Heidelberg, Baden-Württemberg, 69120, Germany.
Introduction: The benefits of sharing participant-level data, including clinical or epidemiological data, genomic data, high-dimensional imaging data, or human-derived samples, from biomedical studies have been widely touted and may be taken for granted. As investments in data sharing and reuse efforts continue to grow, understanding the cost and positive and negative effects of data sharing for research participants, the general public, individual researchers, research and development, clinical practice, and public health is of growing importance. In this scoping review, we will identify and summarize existing evidence on the positive and negative impacts and costs of data sharing and how they are measured.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Here, we present Link-Seq, a highly efficient droplet microfluidic method for combined sequencing of antibody-encoding genes and the transcriptome of individual B cells at large scale. The method is based on 3' barcoding of the transcriptome and subsequent single-molecule PCR in droplets, which freely shift the barcode along specific gene regions, such as the antibody heavy- and light-chain genes. Using the immune repertoire of COVID-19 patients and healthy donors as a model system, we obtain up to 91.
View Article and Find Full Text PDFAIDS Res Hum Retroviruses
January 2025
Clinical Laboratory of the People's Hospital of Baoding, Baoding, China.
The global human immunodeficiency virus 1 (HIV-1) pandemic is driven by the extraordinary genetic diversity of the virus, largely resulting from frequent recombination events. These events generate circulating recombinant forms (CRFs) and unique recombinant forms, which significantly contribute to the complexity of HIV-1 epidemiology, especially within key populations, such as men who have sex with men (MSM). Here, we identified three novel HIV-1 recombinant strains consisting of the CRF01_AE and CRF07_BC subtypes from HIV-positive MSM in Baoding City, Hebei Province, China.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Wageningen University and Research, Plant Breeding, Wageningen, The Netherlands.
Mutants with simultaneous germline mutations were obtained in all three F5H genes and all three FAD2 genes (one to eleven mutated alleles) in order to improve the feed value of the seed meal and the fatty acid composition of the seed oil. In mutants with multiple mutated F5H alleles, sinapine in seed meal was reduced by up to 100%, accompanied by a sharp reduction in the S-monolignol content of lignin without causing lodging or stem break. A lower S-lignin monomer content in stems can contribute to improved stem degradability allowing new uses of stems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!