Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionn65bt6h3f7jc3igm9tbtph9u57asotlf): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Apple ring rot is a severe disease that affects the yield and quality of apple fruits worldwide. However, the underlying molecular mechanism that involved in this process still remains largely unexplored. Here, we report that apple POZ/BTB CONTAINING-PROTEIN 1 (MdPOB1), a BTB-BACK domain E3 ligase protein, functions to suppress apple pathogen defense against Botryosphaeria dothidea (B. dothidea). Both in vitro and in vivo assays indicated that MdPOB1 interacted directly with and degraded apple U-box E3 ligase MdPUB29, a well-established positive regulator of plant innate immunity, through the ubiquitin/26S proteasome pathway. A series of transgenic analyses in apple fruits demonstrated that MdPOB1 affected apple pathogen defense against B. dothidea at least partially, if not completely, via regulating MdPUB29. Additionally, it was found that the apple pathogen defense against B. dothidea was correlated with the H2O2 contents and the relative expression of salicylic acid (SA) synthesis- and SA signaling-related genes, which might be regulated via degradation of MdPUB29 by MdPOB1. Overall, our findings provide new insights into the mechanism of the MdPOB1 modulation of apple ring rot resistance, which occur by directly regulating potential downstream target protein MdPUB29 for proteasomal degradation in apple.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcz106 | DOI Listing |
J Med Case Rep
December 2024
Department of Gastroenterology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
Background: Systemic lupus erythematosus is a multi-organ autoimmune disorder that is treated by immunosuppressive agents that weaken the immune defense against opportunistic pathogens and latent infections such as strongyloidiasis. Herein, we report the case of a 43-year-old woman known to have systemic lupus erythematosus who presented with gastrointestinal symptoms, edema, and bone pain 2 months after receiving immunosuppressive treatment.
Case Presentation: A 43-year-old Iranian female known to have systemic lupus erythematosus and antiphospholipid syndrome presented with abdominal pain, nausea, vomiting, and generalized edema.
Brain Behav Immun
December 2024
Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA; MIND Institute, University of California, Sacramento, CA, USA. Electronic address:
Immune dysfunction in autism spectrum disorder (ASD) has been widely reported and is associated with increased impairments in social interactions, communication, repetitive behaviors, anxiety and gastrointestinal problems. Several lines of evidence point towards increased activation of the innate immune system including activation of microglia, increases in innate inflammatory cytokines/chemokines in blood, brain tissue and CSF, activated dendritic cells and macrophages, and abnormal peripheral monocyte cell function. Monocytes are major players in innate immunity and have important functions in the phagocytosis of pathogens or debris, immune defense and cytokine/chemokine production.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, China. Electronic address:
Arbuscular mycorrhizal (AM) fungi are widely existing soil microorganisms that form symbiotic relationships with most terrestrial plants. They are important for enhancing adversity resistance, including resistance to disease and water stresses. Nevertheless, it is not clear whether the benefits can be maintained in regulating the occurrence of plant diseases under drought, flooding stress and during water restoration.
View Article and Find Full Text PDFFront Plant Sci
December 2024
School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
Introduction: Leaf spot disease caused by the fungal pathogen is one of the most common diseases found in oil palm () nurseries in South East Asia, and is most prevalent at the seedling stage. Severe infections result in localized necrotic regions of leaves that rapidly spread within nurseries leading to poor quality seedlings and high economic losses.
Methods: To understand the molecular mechanisms of this plant-pathogen interaction, RNA-Seq was used to elucidate the transcriptomes of three oil palm genotypes with contrasting pathogen responses (G10 and G12, resistant and G14, susceptible) following infection with spores.
Mol Plant Pathol
December 2024
Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
In Arabidopsis thaliana, the transcription factors WRKY7, WRKY11 and WRKY17 act as negative defence regulators against Pseudomonas syringae pv. tomato (Pst) DC3000. However, their coordinated regulation of gene expression has yet to be fully explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!