A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving Zinc and Iron Accumulation in Maize Grains Using the Zinc and Iron Transporter ZmZIP5. | LitMetric

Improving Zinc and Iron Accumulation in Maize Grains Using the Zinc and Iron Transporter ZmZIP5.

Plant Cell Physiol

Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.

Published: September 2019

Zinc (Zn) and iron (Fe) are essential micronutrients for plant growth. Thus, it is important to understand the mechanisms of uptake, transport and accumulation of these micronutrients in maize to improve crop nutritional quality. Members of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) family are responsible for the uptake and transport of divalent metal ions in plant. Previously, we showed that ZmZIP5 functionally complemented the Zn uptake double mutant zrt1zrt2, Fe-uptake double mutant fet3fet4 in yeast. In our β-glucuronidase (GUS) assay, the germinated seeds, young sheaths, and stems of ZmZIP5-promoter-GUS transgenic plants were stained. We generated and compared two maize lines for this study: Ubi-ZmZIP5, in which ZmZIP5 was constitutively overexpressed, and ZmZIP5i, a RNAi line. At the seedling stage, high levels of Zn and Fe were found in the roots and shoots of Ubi-ZmZIP5 plants, whereas low levels were found in the ZmZIP5i plants. Zn and Fe contents decreased in the seeds of Ubi-ZmZIP5 plants and remained unchanged in the seeds of ZmZIP5i plants. The seeds of Leg-ZmZIP5 plants, in which ZmZIP5 overexpression is specific to the endosperm, had higher levels of Zn and Fe. Our results imply that ZmZIP5 may play a role in Zn and Fe uptake and root-to-shoot translocation. Endosperm-specific ZmZIP5 overexpression could be useful for Zn and Fe biofortification of cereal grains.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcz104DOI Listing

Publication Analysis

Top Keywords

zinc iron
12
uptake transport
8
double mutant
8
ubi-zmzip5 plants
8
zmzip5i plants
8
zmzip5 overexpression
8
zmzip5
6
plants
6
improving zinc
4
iron accumulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!