The in situ observation of electrochemical reactions is challenging due to a constantly changing electrode surface under highly sensitive conditions. This study reports the development of an in situ atomic force microscopy (AFM) technique for electrochemical systems, including the design, fabrication, and successful performance of a sealed AFM cell operating in a controlled atmosphere. Documentation of reversible physical processes on the cathode surface was performed on the example of a highly reactive lithium-oxygen battery system at different water concentrations in the solvent. The AFM data collected during the discharge-recharge cycles correlated well with the simultaneously recorded electrochemical data. We were able to capture the formation of discharge products from correlated electrical and topographical channels and measure the impact of the presence of water. The cell design permitted acquisition of electrochemical impedance spectroscopy, contributing information about electrical double layers under the system's controlled environment. This characterization method can be applied to a wide range of reactive surfaces undergoing transformations under carefully controlled conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541370PMC
http://dx.doi.org/10.3762/bjnano.10.94DOI Listing

Publication Analysis

Top Keywords

discharge products
8
situ afm
4
afm visualization
4
visualization li-o
4
li-o battery
4
battery discharge
4
products redox
4
redox cycling
4
cycling atmospherically
4
controlled
4

Similar Publications

Co-Optimization Operation of Distribution Network-Containing Shared Energy Storage Multi-Microgrids Based on Multi-Body Game.

Sensors (Basel)

January 2025

Xi'an Power Supply Company, State Grid Shaanxi Electric Power Co., Ltd., Xi'an 710032, China.

Under the carbon peaking and carbon neutrality target background, efficient collaborative scheduling between distribution networks and multi-microgrids is of great significance for enhancing renewable energy accommodation and ensuring stable system operation. Therefore, this paper proposes a collaborative optimization method for the operation of distribution networks and multi-microgrids with shared energy storage based on a multi-body game. The method is modeled and solved in two stages.

View Article and Find Full Text PDF

: Stroke is a leading cause of mortality and disability worldwide, ranking as the second most common cause of death and the third in disability-adjusted life-years lost. Ischaemic stroke, which constitutes the majority of cases, poses significant public health and economic challenges. This study evaluates trends in ischaemic stroke hospitalisations in Italy from 2008 to 2022, focusing on differences before and after the COVID-19 pandemic.

View Article and Find Full Text PDF

C-UHTC is an ideal aerospace material because of its exceptional properties, but its machinability is facing great challenges. Electrical discharge machining (EDM) offers a potential solution, but its removal mechanism remains unclear, lacking reliable prediction tools to guide the actual production. This paper deeply explores the EDM removal mechanism of C-ZrB-SiC through single-pulse experiments, high-speed camera observations, and thermal-fluid coupling simulations, revealing key processes like heat transfer, phase transformation, molten pool dynamics, crater formation, and reinforcing phase effects.

View Article and Find Full Text PDF

In Slovakia, there are a number of contaminated sites that have occurred due to intensive mining, mineral processing, metallurgical activities, chemical industry, fossil fuel combustion, and industrial agriculture in the past. This paper summarizes the occurrence, chemistry, toxicity, and mineralogy of arsenic species related to soil and water contamination in Slovakia. Four main localities with arsenic exposure were identified.

View Article and Find Full Text PDF

High-voltage transmission lines face significant challenges due to environmental exposure, including corona discharge, ice accretion, and corrosion, which impact their durability and operational efficiency. This study investigates the performance of hydrophilic and superhydrophilic organosilane coatings applied to high-voltage wires to address these issues. Using a combination of experimental setups simulating real-world conditions, we evaluated corona discharge losses, ice adhesion, and corrosion resistance on coated and uncoated wires.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!