Is the Potable Water System an Advantageous Preinfection Niche for Bacteria Colonizing the Cystic Fibrosis Lung?

mBio

Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA

Published: June 2019

People with cystic fibrosis are susceptible to lung infections from a variety of bacteria, a number of which also reside in the potable water system, including , , , complex, and nontuberculosis Here, I propose chemical and physical aspects of the potable water system along with bacterial lifestyle strategies in this system that may enhance successful colonization of cystic fibrosis lungs by these bacteria, including iron and copper levels, lipids, and low growth rates within low-oxygen biofilms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6550525PMC
http://dx.doi.org/10.1128/mBio.00883-19DOI Listing

Publication Analysis

Top Keywords

potable water
12
water system
12
cystic fibrosis
12
system
4
system advantageous
4
advantageous preinfection
4
preinfection niche
4
niche bacteria
4
bacteria colonizing
4
colonizing cystic
4

Similar Publications

Background: One of the tropical illnesses that is often overlooked is soil-transmitted helminths, or STHs. In tropical and subtropical nations, where poor sanitation and contaminated water sources are common, they mostly impact the most vulnerable populations.

Objective: The aim of this study was to ascertain the prevalence of STHs and related risk factors among the people living in Jigjiga town, Somali region, Eastern Ethiopia.

View Article and Find Full Text PDF

Non-targeted analysis (NTA) using high-resolution mass spectrometry without defined chemical targets has the potential to expand and improve chemical monitoring in many fields. Despite rapid advancements within the research community, NTA methods and data remain underutilized by many potential beneficiaries. To better understand barriers toward widespread adoption, the Best Practices for Non-Targeted Analysis (BP4NTA) working group conducted focus group meetings and follow-up surveys with scientists (n = 61) from various sectors (e.

View Article and Find Full Text PDF

Extensive agricultural regions commonly face issues of poor groundwater management, non-standard agricultural production practices, and unordered discharge of domestic pollution, leading to a continuous decline in groundwater quality and a sharp increase in risks. A comprehensive understanding of groundwater conditions and pollution is a crucial step in effectively addressing the water quality crisis. This study employs the Comprehensive Water Quality Index, Irrigation parameter, and Pollution Index to comprehensively investigate the groundwater quality in a typical agricultural area in Shandong, China, and assesses the suitability of groundwater for irrigation and the risks to human health.

View Article and Find Full Text PDF

Removal of dissolved organic matter in road runoff with sludge-based filters from the drinking water treatment plant.

Water Sci Technol

January 2025

China Construction Fifth Engineering Division Co., Ltd, Changsha, Hunan 410004, China.

Road runoff underwent treatment using a filter filled with sludge from drinking water treatment plants to assess its capacity for removing dissolved organic matter (DOM). This evaluation utilized resin fractionation, gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-Visible spectroscopy. The filter demonstrated enhanced efficiency in removing dissolved organic carbon, achieving removal rates between 70 and 80%.

View Article and Find Full Text PDF

Influence of sewage effluent discharge on putative pathogen community in drinking water sources: insights from full-length 16S rRNA gene amplicon sequencing.

J Water Health

January 2025

Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan.

The discharge of sewage effluent is a major source of microbial contamination in drinking water sources, necessitating a comprehensive investigation of its impact on pathogenic bacterial communities. This study utilized full-length 16S rRNA gene amplicon sequencing to identify putative pathogenic bacteria and analyze their community structures in drinking water sources subjected to different levels of fecal pollution: urban rivers with low, moderate, and high sewage effluent mixing ratios, and mountain streams with minimal human impact. The sewage effluent itself was also analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!