Spatial division multiplexing transmission over few-mode multicore fiber (FM-MCF) recently attracts great interests by simultaneously exploiting two more dimensions than conventional single mode fibers. In this paper, we propose an all-fiber spatial multiplexer (MUX) by cascading mode-selective fiber couplers (MSCs) with a fiber-bundle-type fan-in device, and spatial demultiplexer (DEMUX) by cascading a fiber-bundle-type fan-out device with degenerate-mode-selective fiber couplers and MSCs. Thanks to the low crosstalk of the FM-MCF, spatial MUX/DEMUX and their coupling, weakly-coupled 7-core-2-LP-mode real-time transmission over 1-km of FM-MCF is successfully demonstrated using 10-Gbps commercial enhanced small form-factor pluggable (SFP + ) transceivers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.016271 | DOI Listing |
Spatial division multiplexing transmission over few-mode multicore fiber (FM-MCF) recently attracts great interests by simultaneously exploiting two more dimensions than conventional single mode fibers. In this paper, we propose an all-fiber spatial multiplexer (MUX) by cascading mode-selective fiber couplers (MSCs) with a fiber-bundle-type fan-in device, and spatial demultiplexer (DEMUX) by cascading a fiber-bundle-type fan-out device with degenerate-mode-selective fiber couplers and MSCs. Thanks to the low crosstalk of the FM-MCF, spatial MUX/DEMUX and their coupling, weakly-coupled 7-core-2-LP-mode real-time transmission over 1-km of FM-MCF is successfully demonstrated using 10-Gbps commercial enhanced small form-factor pluggable (SFP + ) transceivers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!