AI Article Synopsis

  • A new quantum cascade laser array with eight elements operates at room temperature and emits at 8 µm, achieving a high continuous-wave output power of 8.2 W and a wall plug efficiency of 9.5%.
  • The array utilizes an in-phase supermode for single-mode emission, featuring a significant side-mode suppression ratio of around 20 dB.
  • Additionally, a record wall plug efficiency of 20.4% is reached with a separate single-element Fabry-Perot laser in pulsed mode at 20 °C, thanks to its advanced design characteristics.

Article Abstract

We report a room-temperature eight-element phase-locked quantum cascade laser array emitting at 8 µm with a high continuous-wave power of 8.2 W and wall plug efficiency of 9.5%. The laser array operates primarily via the in-phase supermode and has single-mode emission with a side-mode suppression ratio of ~20 dB. The quantum cascade laser active region is based on a high differential gain (8.7 cm/kA) and low voltage defect (90 meV) design. A record high wall plug efficiency of 20.4% is achieved from a low loss buried ridge type single-element Fabry-Perot laser operating in pulsed mode at 20 °C.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.015776DOI Listing

Publication Analysis

Top Keywords

quantum cascade
12
cascade laser
12
phase-locked quantum
8
emitting µm
8
laser array
8
wall plug
8
plug efficiency
8
laser
5
high-power continuous-wave
4
continuous-wave phase-locked
4

Similar Publications

Quantum Cascade Lasers (QCL) are promising semiconductor lasers, compact and powerful, but of complex design. Availability of structured data of the QCL properties can support data mining activities that seek to understand the relationship between these properties, for instance between the design and performance features. The main open source of QCL data is in scientific text which in most cases is usually unstructured.

View Article and Find Full Text PDF

We propose an alternative scheme for implementing the antibunching effects of two-magnon bundle in a hybrid ferromagnet-superconductor system, where a magnon mode from the yttrium iron garnet (YIG) sphere interacts with a three-level superconducting qubit via photon virtual excitation in the microwave cavity. With the help of the qubit driving from the ground state to the excited state, the cascaded emission of magnon occurs and then the two-magnon bundle is formed. By analyzing the ordinary and generalized second-order correlation functions, it is found that the antibunched two-magnon bundle could be achieved via properly choosing the system parameters, which is originated from the anharmonicity of dressed energy levels induced by magnon-qubit couplings.

View Article and Find Full Text PDF

In Vivo Nanodiamond Quantum Sensing of Free Radicals in Caenorhabditis elegans Models.

Adv Sci (Weinh)

January 2025

Department of Biomaterials & Biomedical Technology (BBT), University Medical Centre Groningen (UMCG), Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands.

Free radicals are believed to play a secondary role in the cell death cascade associated with various diseases. In Huntington's disease (HD), the aggregation of polyglutamine (PolyQ) not only contributes to the disease but also elevates free radical levels. However, measuring free radicals is difficult due to their short lifespan and limited diffusion range.

View Article and Find Full Text PDF

The natural Z-scheme of oxygenic photosynthesis efficiently drives electron transfer from photosystem II (PSII) to photosystem I (PSI) via an electron transport chain, despite the lower energy levels of PSII. Inspired by this sophisticated mechanism, we present a layered cascade bio-solar cell (CBSC) that emulates the Z-scheme. In this design, chlorophyll derivatives (Chl) act as PSI analogs, while bacteriochlorophyll derivatives (BChl) serve as PSII analogs in the active layer.

View Article and Find Full Text PDF

A vibrational circular dichroism (VCD) instrument having a thermoelectrically cooled detector (denoted as a TEC unit) was constructed in this study. An electronic device, instead of liquid nitrogen, was employed in the instrument to cool the detector. The feasibility of the system was examined by recording the VCD spectra of liquid pinenes and insect wings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!