The Fast Fourier Transform (FFT) algorithm makes up the backbone of fast physical optics modeling. Its numerical effort, approximately linear on the sample number of the function to be transformed, already constitutes a huge improvement on the original Discrete Fourier Transform. However, even this orders-of-magnitude improvement in the number of operations required can fall short in optics, where the tendency is to work with field components that present strong wavefront phases: this translates, as per the Nyquist-Shannon sampling theorem, into a huge sample number. So much so, in fact, that even with the reduced effort of the FFT, the operation becomes impracticable. Finding a workaround that allows us to evade, at least in part, these stringent sampling requirements is then fundamental for the practical feasibility of the Fourier transform in optics. In this work we propose, precisely, a way to tackle the Fourier transform that eschews the sampling of second-order polynomial phase terms, handling them analytically instead: it is for this reason that we refer to this method as the "semi-analytical Fourier transform". We present here the theory behind this concept and show the algorithm in action at several examples which serve to illustrate the vast potential of this approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.015335 | DOI Listing |
JACS Au
January 2025
Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zurich, Switzerland.
Hydrogenation of CO to methanol is foreseen as a key step to close the carbon cycle. In this study, we show that introducing Ga into silica-supported nanoparticles based on group 8-9 transition noble metals (M = Ru, Os, Rh, and Ir - Ga@SiO) switches their reactivity from producing mostly methane (sel. > 97%) to producing methanol (>50% CHOH/DME sel.
View Article and Find Full Text PDFJACS Au
January 2025
School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
The synthesis of high-performance catalysts for volatile organic compounds (VOCs) degradation under humid conditions is essential for their practical industrial application. Herein, a codoping strategy was adopted to synthesize the N-CoO-C catalyst with N, C codoping for low-temperature ethyl acetate (EA) degradation under humid conditions. Results showed that N-CoO-C exhibited great catalytic activity ( = 177 °C) and water resistance (5.
View Article and Find Full Text PDFHeliyon
January 2025
Food Toxicology and Contaminants Department, National Research Centre, Egypt.
is a severe danger to worldwide maize () cultivation, due to its extreme toxicity of aflatoxins produced by the fungi, and its ability to cause economic losses while also posing a health concern to humans and animals. Among the measures that may be considered for control, applying coatings based on natural ingredients appears to be the most promising. The current work examines the antagonistic ability of bioactive metabolites added to chitosan nanoparticles against on maize kernels.
View Article and Find Full Text PDFLangmuir
January 2025
Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
Acid mine drainage sludge (AMDS) can be utilized as a raw material to synthesize an efficient adsorbent through a more environmentally friendly approach for the removal of pollutants from water. In this study, iron ions were extracted from AMDS and then reacted with trimesic acid (BTC) under ambient conditions to synthesize Fe-BTC-, iron-based metal-organic frameworks. These materials demonstrate an exceptionally high specific surface area and excellent chemical stability.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
Azurin, a bacterial blue-copper protein, has garnered significant attention as a potential anticancer drug in recent years. Among twenty Pseudomonas aeruginosa isolates, we identified one isolate that demonstrated potent and remarkable azurin synthesis using the VITEK 2 system and 16S rRNA sequencing. The presence of the azurin gene was confirmed in the genomic DNA using specific oligonucleotide primers, and azurin expression was also detected in the synthesized cDNA, which revealed that the azurin expression is active.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!