Hormonal disturbances, such as hyperandrogenism, are considered important for developing polycystic ovary syndrome (PCOS) in humans. Accordingly, directly hormone-regulated animal models are widely used for studying PCOS, as they replicate several key PCOS features. However, the pathogenesis and treatment of PCOS are still unclear. In this review, we aimed to investigate animal PCOS models and PCOS-like phenotypes in animal experiments without direct hormonal interventions and determine the underlying mechanisms for a better understanding of PCOS. We summarized animal PCOS models that used indirect hormonal interventions and suggested or discussed pathogenesis of PCOS-like features in animals and PCOS-like phenotypes generated in other animals. We presented integrated physiological insights and shared cellular pathways underlying the pathogenesis of PCOS in reviewed animal models. Our review indicates that the hormonal and metabolic changes could be due to molecular dysregulations, such as upregulated PI3K-Akt and extracellular signal-regulated kinase (ERK) signalling, that potentially cause PCOS-like phenotypes in the animal models. This review will be helpful for considering alternative animal PCOS models to determine the cellular/molecular mechanisms underlying PCOS symptoms. The efforts to determine the specific cellular mechanisms of PCOS will contribute to novel treatments and control methods for this complex syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600358 | PMC |
http://dx.doi.org/10.3390/ijms20112720 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405.
Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Opthalmology, Chongqing Hechuan District People's Hospital, Chongqing, China.
Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.
Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).
Vet Med Sci
January 2025
Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh.
Background: Brucellosis is a zoonotic disease caused by Brucella spp., affecting various animals and humans, leading to significant economic and public health impacts. Traditional diagnostic methods, mainly serological, often fail to detect seronegative carriers, which continue to spread the infection.
View Article and Find Full Text PDFClin Neuropharmacol
January 2025
Medical Biochemistry, Erzincan Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey.
Objectives: Our aim was to evaluate the comparative effects of sertraline and vortioxetine against stress-induced brain injury in rats.
Methods: The rats were assigned to a nonstress group (NSG), stress-treated control (StC), sertraline + stress (SSt), and vortioxetine + stress (VSt) groups. Sertraline and vortioxetine (10 mg/kg) were given orally by gavage to the SSt and VSt groups.
J Cancer Res Ther
December 2024
Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China.
Introduction: Cancer cachexia (CC) is characterized by weight loss with specifically reduced skeletal muscles and adipose tissues in patients with late-stage cancer. Dihydroartemisinin (DHA), an effective antimalarial derivative of artemisinin, has been demonstrated to have anti-inflammatory and antitumor properties.
Materials And Methods: This study examined the effects of DHA on the Lewis lung carcinoma (LLC)-induced CC mouse model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!