Cell fusion is an integral, established phenomenon underlying various physiological processes in the cell cycle. Although research in cancer metastasis has hypothesised numerous molecular mechanisms and signalling pathways responsible for invasion and metastasis, the origin and progression of metastatic cells within primary tumours remains unclear. Recently, the role of cancer cell fusion in cancer metastasis and development of multidrug resistance (MDR) in tumours has gained prominence. However, evidence remains lacking to justify the role of cell fusion in cancer metastasis and drug resistance. Here, we highlight plausible mechanisms governing cell fusion with different cell types in the tumour microenvironment (TME), the clinical relevance of cancer cell fusion, its potential as a target for overcoming MDR and inhibiting metastasis, and putative modes of treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.drudis.2019.05.024 | DOI Listing |
Iran J Immunol
December 2024
Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Background: Developing effective targeted treatment approaches to overcome drug resistance remains a crucial goal in cancer research. Immunotoxins have dual functionality in cancer detection and targeted therapy.
Objective: This study aimed to engineer a recombinant chimeric fusion protein by combining a nanobody-targeting domain with an exotoxin effector domain.
Sci Rep
December 2024
Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China.
Superoxide dismutase (SOD) plays important roles in the balance of oxidation and antioxidation in body mostly by scavenging superoxide anion free radicals (O). Previously, we reported a novel Cu/Zn SOD from jellyfish Cyanea capillata, named CcSOD1, which exhibited excellent SOD activity and high stability. TAT peptide is a common type of cell penetrating peptides (CPPs) that efficiently deliver extracellular biomacromolecules into cytoplasm.
View Article and Find Full Text PDFNeurotherapeutics
December 2024
Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA; Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, 77030, USA. Electronic address:
Mitochondrial dysfunction is an important driver of neurodegeneration and synaptic abnormalities in Alzheimer's disease (AD). Amyloid beta (Aβ) in mitochondria leads to increased reactive oxygen species (ROS) production, resulting in a vicious cycle of oxidative stress in coordination with a defective electron transport chain (ETC), decreasing ATP production. AD neurons exhibit impaired mitochondrial dynamics, evidenced by fusion and fission imbalances, increased fragmentation, and deficient mitochondrial biogenesis, contributing to fewer mitochondria in brains of AD patients.
View Article and Find Full Text PDFCell Rep Med
December 2024
Department of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) has a minimal (<15%) 5-year existence, in part due to resistance to chemoradiotherapy. Previous research reveals the impact of paricalcitol (P) and hydroxychloroquine (H) on altering the lysosomal fusion, decreasing stromal burden, and triggering PDAC to chemotherapies. This investigation aims to elucidate the molecular properties of the H and P combination and their potential in sensitizing PDAC to gemcitabine (G).
View Article and Find Full Text PDFJ Natl Compr Canc Netw
December 2024
1Division of Thoracic Tumor Multimodality Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
EGFR tyrosine kinase inhibitors (TKIs) have significantly improved clinical outcomes for patients with non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations. However, resistance to TKI therapy often develops due to secondary EGFR mutations or the activation of bypass signalling pathways. Next-generation sequencing (NGS) can efficiently identify actionable genetic alterations throughout treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!