The basement membrane (BM) provides a physical barrier to invasion in epithelial tumors, and alterations in the molecular makeup and structural integrity of the BM have been implicated in cancer progression. Invadopodia are the invasive protrusions that enable cancer cells to breach the nanoporous basement membrane, through matrix degradation and generation of force. However, the impact of covalent cross-linking on invadopodia extension into the BM remains unclear. Here, we examine the impact of covalent cross-linking of extracellular matrix on invasive protrusions using biomaterials that present ligands relevant to the basement membrane and provide a nanoporous, confining microenvironment. We find that increased covalent cross-linking of reconstituted basement membrane (rBM) matrix diminishes matrix mechanical plasticity, or the ability of the matrix to permanently retain deformation due to force. Covalently cross-linked rBM matrices, and rBM-alginate interpenetrating networks (IPNs) with covalent cross-links and low plasticity, restrict cell spreading and protrusivity. The reduced spreading and reduced protrusivity in response to low mechanical plasticity occurred independent of proteases. Mechanistically, our computational model reveals that the reduction in mechanical plasticity due to covalent cross-linking is sufficient to mechanically prevent cell protrusions from extending, independent of the impact of covalent cross-linking or matrix mechanical plasticity on cell signaling pathways. These findings highlight the biophysical role of covalent cross-linking in regulating basement membrane plasticity, as well as cancer cell invasion of this confining tissue layer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885090 | PMC |
http://dx.doi.org/10.1016/j.matbio.2019.05.006 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces (CPI), Albert Ludwigs Universität Freiburg, Georges Köhler Allee 103, 79110 Freiburg, Germany.
Glaucoma, a leading cause of blindness, demands innovative and effective treatments that surpass the limitations of current drug and surgical interventions to lower intraocular pressure. This study describes the generation of cell-repellent hydrogel patches, their deposition on the ocular surface, and a photoinduced chemical binding between the patches and the collagens of the eye. The hydrophilic and protein-repellent hydrogel patch is composed of a copolymer made from dimethylacrylamide and a comonomer unit with anthraquinone moieties.
View Article and Find Full Text PDFMacromol Biosci
January 2025
School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
Adhesive hydrogels are emerging as attractive functional materials for various fields, such as tissue engineering, wound healing, E-skins, etc. However, the removal of adhesive hydrogels from covered area may be painful and cause a secondary damage. In the current study, gelatin-based hydrogels are prepared by cross-linking with tannic acid and 4-formylphenyl boronic acid, through simultaneous dynamic covalent boronic ester and imine bond formations.
View Article and Find Full Text PDFPLoS One
January 2025
Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
Non-covalent protein-protein interactions are one of the most fundamental building blocks in cellular signalling pathways. Despite this, they have been historically hard to identify using conventional methods due to their often weak and transient nature. Using genetic code expansion and incorporation of commercially available unnatural amino acids, we have developed a highly accessible method whereby interactions between biotinylated ubiquitin-like protein (UBL) probes and their binding partners can be stabilised using ultraviolet (UV) light-induced crosslinks.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
As an abundant renewable natural material, starch has attracted unprecedented interest in the biomedical field. Carboxylated starch particles have been investigated for topical hemostasis, but the powder may not provide physical protection or support for wounds. Here, we prepared macroporous cryogel sponges of methacrylated carboxymethyl starch (CM-ST-MA) containing a covalent and a calcium ionic double network.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia.
This study explores various methods for the covalent immobilization of cysteine proteases (ficin, papain, and bromelain). Covalent immobilization involves the formation of covalent bonds between the enzyme and a carrier or between enzyme molecules themselves without a carrier using a crosslinking agent. This process enhances the stability of the enzyme and allows for the creation of preparations with specific and controlled properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!