Herein, the synthesis of amylose-coated, temperature-responsive poly(N-vinylcaprolactam) (VCL)-based copolymer microgels by enzyme-catalyzed grafting-from polymerization with phosphorylase b from rabbit muscle is reported. The phosphorylase is able to recognize the oligosaccharide maltoheptaose as primer and attach glucose units from the monomer glucose-1-phosphate to it, thereby forming amylose chains while releasing inorganic phosphate. Therefore, to enable the phosphorylase-catalyzed grafting-from polymerization of glucose-1-phosphate from the PVCL-based microgels, the maltoheptaose primer is covalently attached to the microgel in the first synthesis step. This is realized by adding N-(2-aminoethyl)methacrylamide (AEMAA) as a comonomer to the PVCL microgel to integrate primary amino groups and subsequent coupling of maltoheptaonolactone. Both the PVCL/AEMAA microgel as well as the obtained microgel-maltoheptaose construct are characterized in detail by dynamic light scattering, electrophoretic mobility measurements, IR spectroscopy, and atomic force microscopy. From the microgel-maltoheptaose construct, the grafting-from polymerization of glucose-1-phosphate is performed by the addition of phosphorylase b. Atomic force microscopy images clearly demonstrate the formation of an amylose shell around the microgels. The developed amylose-coated microgels open up promising application possibilities, for example, as colloidal scavengers, since amylose helices can serve as host molecules for inclusion of hydrophobic guest molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201900144DOI Listing

Publication Analysis

Top Keywords

grafting-from polymerization
16
phosphorylase-catalyzed grafting-from
8
maltoheptaose primer
8
polymerization glucose-1-phosphate
8
microgel-maltoheptaose construct
8
atomic force
8
force microscopy
8
microgels
5
amylose-coated biohybrid
4
biohybrid microgels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!