Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635789 | PMC |
http://dx.doi.org/10.1164/rccm.201903-0503LE | DOI Listing |
Res Sq
November 2024
Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
Liver fibrosis is a common pathway shared by all forms of progressive chronic liver disease. There is an unmet clinical need for noninvasive imaging tools to diagnose and stage fibrosis, which presently relies heavily on percutaneous liver biopsy. Here we explored the feasibility of using a novel type I collagen-targeted manganese (Mn)-based MRI probe, Mn-CBP20, for liver fibrosis imaging.
View Article and Find Full Text PDFTalanta
February 2025
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China. Electronic address:
Monitoring collagen denaturation is crucial for diagnosing collagen-related diseases such as tumors and fibrosis. Herein, we have developed specific probes to detect denatured collagen (d-Col) and collagen I (Col I), utilizing peptide probes with sequences (GOP) and HVWMQAP, targeting at d-Col and Col I, respectively. These peptides were conjugated with 1,10-phenanthroline-5-carboxylic Acid (Phen), forming Phen-Ahx-(GOP) and Phen-Ahx-HVWMQAP.
View Article and Find Full Text PDFActa Biomater
October 2024
Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Chemistry, New York University, New York, NY 10012, USA; Department of Biomaterials, New York University College of Dentistry, New York, NY 10010, USA. Electronic address:
In vivo molecular imaging tools hold immense potential to drive transformative breakthroughs by enabling researchers to visualize cellular and molecular interactions in real-time and/or at high resolution. These advancements will facilitate a deeper understanding of fundamental biological processes and their dysregulation in disease states. Here, we develop and characterize a self-assembling protein nanomicelle called collagen type I binding - thermoresponsive assembled protein (Col1-TRAP) that binds tightly to type I collagen in vitro with nanomolar affinity.
View Article and Find Full Text PDFMater Today Bio
October 2024
Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Paediatrics, National Clinical Key Cardiovascular Specialty, Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Children's Hospital of Chongqing Medical University, Chongqing, China.
Fibrotic scarring and impaired myocardial calcium homeostasis serve as the two main factors in the pathology of heart failure following myocardial infarction (MI), leading to poor prognosis and death in patients. Serca2a is a target of interest in gene therapy for MI-induced heart failure via the regulation of intracellular calcium homeostasis and, subsequently, enhancing myocardial contractility. A recent study also reported that Serca2a ameliorates pulmonary fibrosis by blocking nuclear factor kB (NF-kB)/interleukin-6 (IL-6)-induced (SMAD)/TGF-β signaling activation, while the effect in MI-induced myocardial fibrosis remains to be addressed.
View Article and Find Full Text PDFJ Proteome Res
September 2024
Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States.
Hepatocellular carcinoma (HCC) mortality rates continue to increase faster than those of other cancer types due to high heterogeneity, which limits diagnosis and treatment. Pathological and molecular subtyping have identified that HCC tumors with poor outcomes are characterized by intratumoral collagenous accumulation. However, the translational and post-translational regulation of tumor collagen, which is critical to the outcome, remains largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!