A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biological surface electromyographic switch and necklace-type button switch control as an augmentative and alternative communication input device: a feasibility study. | LitMetric

Biological surface electromyographic switch and necklace-type button switch control as an augmentative and alternative communication input device: a feasibility study.

Australas Phys Eng Sci Med

Department of Physical Therapy, Kyungnam University, 7 Kyungnamdaehak-ro, Masanhappo-gu, Changwon, Gyeongsangnam-do, 51767, Republic of Korea.

Published: September 2019

Augmentative and alternative communication (AAC) is an approach used to supplement, improve, and support the communication of those with speech or language impairments. We developed an AAC device for diverse approaches, using an electromyographic (EMG) switch and a necklace-type button switch. The EMG switch comprised an EMG signal processor and a switch interface processor. EMG signals were processed using an electrode through the stages of signal acquisition, amplification, filtering, rectification, and smoothing. In the switch interface processor, the microprocessor determined the switch as ON or OFF in response to an input EMG signal and then converted the EMG signal into a keyboard signal, which was transmitted to a smart device via Bluetooth communication. A similar transmission process was used for the necklace-type button switch, and switch signals were input and processed with general-purpose input/output. The first and second feasibility tests for the EMG switch and button switch were conducted in a total of three test sessions. The result of the feasibility test indicated that the major inconvenience and desired improvement associated with the EMG switch were the intricacy of the AAC device settings. The major inconveniences and desired improvements for the necklace-type button switch involved device shifting, volume and weight, and inconvenience in fixing the switch in various directions. Thus, based on the first and second feasibility tests, we developed an additional device. Finally, the EMG switch and necklace-type button switch developed to remedy the inconveniencies had high feasibility.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13246-019-00766-1DOI Listing

Publication Analysis

Top Keywords

button switch
24
necklace-type button
20
emg switch
20
switch
17
switch necklace-type
12
emg signal
12
emg
9
augmentative alternative
8
alternative communication
8
aac device
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!