Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A tablet film coating and drying process was assessed by an experimentally validated thermodynamic balance model. Mass conservation equations were derived for the process air and the aqueous coating solution. Thermodynamic behavior of the solution was described by evaporation at the tablet surface and penetration into the tablet. Energy balance equations including heat loss to the atmosphere were coupled to the mass conservation equation. Experimental data using the ConsiGma™ coater (GEA, Belgium) were used for both parameter estimation and model validation. The results showed the proposed model can investigate primitive outlet variables and further internal variables representing evaporation and penetration. A sensitivity analysis revealed that evaporation depended more on the input parameters while penetration hinges on the tablet properties, particularly on the tablet volume affecting the tablet porosity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-019-1398-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!