This study investigated methane production in an anaerobic sequencing batch biofilm reactor (AnSBBR) by co-digesting sugarcane vinasse and cheese whey. The assessment was based on the influence of feed strategy, interaction between cycle time and influent concentration, applied volumetric organic load (OLR), and temperature over system stability and performance. The system showed flexibility with regard to the feed strategy, but the reduction of cycle time and influent concentration, at the same OLR, resulted in lower methane productivity. Increasing organic load, up to the value of 15.27 gCOD L day, favored the process, increasing methane yield and productivity. Temperature reduction from 30 to 25 °C resulted in worse performance, although increasing it to 35 °C provided similar results to 30 °C. The best results were achieved at an OLR of 15.27 gCOD L day, cycle time of 8 h, fed-batch operation, and temperature of 30 °C. The system achieved soluble COD removal efficiency of 89%, methane productivity of 208.5 molCH m day and yield of 15.76 mmolCH gCOD. The kinetic model fit indicated methanogenesis preference for the hydrogenotrophic route. At the industrial scale estimative, considering a scenario with a sugarcane ethanol plant with ethanol production of 150,896 m year, it was estimated energy production of 25,544 MWh month.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-019-03056-4DOI Listing

Publication Analysis

Top Keywords

methane productivity
12
cycle time
12
cheese whey
8
feed strategy
8
time influent
8
influent concentration
8
organic load
8
methane
5
improvement sugarcane
4
sugarcane stillage
4

Similar Publications

Methanogenic archaea (methanogens) possess fascinating metabolic characteristics, such as the ability to fix molecular nitrogen (N). Methanogens are of biotechnological importance due to the ability to produce methane (CH) from molecular hydrogen (H) and carbon dioxide (CO) and to excrete proteinogenic amino acids. This study focuses on analyzing the link between biological methanogenesis and amino acid excretion under N-fixing conditions.

View Article and Find Full Text PDF

Application of bio-electrochemical systems for phosphorus resource recovery: Progress and prospects.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:

This review focuses on applying bio-electrochemical systems (BES) for phosphorus (P) recovery. Microbial fuel cells (MFCs) degrade pollutants to generate electricity and recover P, with the structure and electrode materials playing a significant role in P recovery efficiency. Microbial electrolysis cells (MECs) recover P while simultaneously producing hydrogen or methane, with factors such as voltage and pH influencing performance.

View Article and Find Full Text PDF

Context: The rotating arc plasma technique for the synthesis of nitrogen-doped graphene capitalizes on the distinctive attributes of plasma, presenting a straightforward, efficient, and catalyst-free strategy for the production of nitrogen-doped graphene. However, experimental outcomes generally fail to elucidate the atomic-level mechanism behind this process. Our research utilizes molecular dynamics simulations to explore theoretically the formation of radicals during the plasma-driven reaction between methane (CH₄) and nitrogen (N₂).

View Article and Find Full Text PDF

Methane production from anaerobic pre-treatment of municipal wastewater combined with olive mill wastewater: A demonstration study.

Water Sci Technol

January 2025

The Institute of Applied Research, The Galilee Society, Shefa-Amr 2020000, Israel; Agrobics Ltd, Shefa-Amr 2020000, Israel; Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel 2161002, Israel.

The advanced anaerobic technology (AAT), developed based on an immobilized high-rate anaerobic reactor, was applied as a pretreatment of municipal wastewater (WW) at Karmiel's treatment plant in Israel. The demonstration-scale AAT (21 m) system was operated at a flow rate of 100 mday municipal WW mixed with olive mill wastewater (OMW) (0.5 mday) to simulate the scenario of illegal discharge of agro-industrial WW.

View Article and Find Full Text PDF

Anthraquinone-2-sulfonate immobilized on granular activated carbon inhibits methane production during the anaerobic digestion of swine wastewater.

Water Sci Technol

January 2025

Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 sur, Ciudad Obregón, Sonora 85000, México E-mail:

Granular activated carbon (GAC) and GAC modified with anthraquinone-2-sulfonate (AQS) were used as conductive materials during the anaerobic digestion of swine wastewater (SW). The electron transfer capacity (ETC) in the GAC-AQS was 2.1-fold higher than the unmodified GAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!