Loading in cartilage is supported primarily by fibrillar collagen, and damage will impair the function of the tissue, leading to pathologies such as osteoarthritis. Damage is initiated by two types of matrix metalloproteinases, collagenase and gelatinase, that cleave and denature the collagen fibrils in the tissue. Experimental and modeling studies have revealed insights into the individual contributions of these two types of MMPs, as well as the mechanical response of intact fibrils and fibrils that have experienced random surface degradation. However, no research has comprehensively examined the combined influences of collagenases and gelatinases on collagen degradation nor studied the mechanical consequences of biological degradation of collagen fibrils. Such preclinical examinations are required to gain insights into understanding, treating, and preventing degradation-related cartilage pathology. To develop these insights, we use sequential Monte Carlo and molecular dynamics simulations to probe the effect of enzymatic degradation on the structure and mechanics of a single collagen fibril. We find that the mechanical response depends on the ratio of collagenase to gelatinase-not just the amount of lost fibril mass-and we provide a possible mechanism underlying this phenomenon. Overall, by characterizing the combined influences of collagenases and gelatinases on fibril degradation and mechanics at the preclinical research stage, we gain insights that may facilitate the development of targeted interventions to prevent the damage and loss of mechanical integrity that can lead to cartilage pathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825035PMC
http://dx.doi.org/10.1007/s10237-019-01178-6DOI Listing

Publication Analysis

Top Keywords

collagen fibril
8
collagen fibrils
8
mechanical response
8
combined influences
8
influences collagenases
8
collagenases gelatinases
8
gain insights
8
cartilage pathology
8
collagen
6
mechanical
5

Similar Publications

Measuring the biomechanical properties of cell-derived fibronectin fibrils.

Biomech Model Mechanobiol

December 2024

Department of Biomedical Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA, 23284, USA.

Embryonic development, wound healing, and organogenesis all require assembly of the extracellular matrix protein fibronectin (FN) into insoluble, viscoelastic fibrils. FN fibrils mediate cell migration, force generation, angiogenic sprouting, and collagen deposition. While the critical role of FN fibrils has long been appreciated, we still have an extremely poor understanding of their mechanical properties and how these mechanical properties facilitate cellular responses.

View Article and Find Full Text PDF

GraphLOGIC: Lethality prediction of osteogenesis imperfecta on type I collagen by a mechanics-informed graph neural network.

Int J Biol Macromol

December 2024

Department of Civil Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan. Electronic address:

Collagen plays a crucial role in human bodies and has a significant presence in connective tissues. As such, the impact of collagen mutations can be devastating. Osteogenesis imperfecta (OI), a rare genetic disease affecting 1 in every 15,000 to 20,000 people, is one such example characterized by brittle bones.

View Article and Find Full Text PDF

Although the sternoclavicular joint shares structural similarities with the knee and hip joints as a diarthrodial joint, its biomechanics differ significantly due to its non-weight-bearing nature. Nevertheless, it is subject to considerable loading, leading to increased susceptibility to osteoarthritis, a prevalent condition characterized by the degeneration of the joint's articular surfaces and fibrocartilaginous intra-articular disc. The osteoarthritic degeneration of the fibrocartilaginous and cartilaginous surfaces of the sternoclavicular joint has been investigated, considering multiple factors.

View Article and Find Full Text PDF

The present study aims to summarize the current biomarker landscape in gynecological cancers (GCs) and incorporate bioinformatics analysis to highlight specific biological processes. The literature was retrieved from PubMed, Web of Science, Embase, Scopus, Ovid Medline, and Cochrane Library. The final search was conducted on December 7, 2022.

View Article and Find Full Text PDF

Background: Vitamin A, or retinol, is one of the most effective antiaging molecules, but it presents issues with photo-sensitivity and irritation. Alternatives are emerging, but have so far been less effective.

Objective: Here, we present a Silibum marianum extract (SME) as a retinol-like ingredient providing both safety and efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!