Traditional therapeutics and vaccines represent the bedrock of modern medicine, where isolated biochemical molecules or designed proteins have led to success in treating and preventing diseases. However, several adaptive pathogens, such as multidrug-resistant (MDR) superbugs, and rapidly evolving diseases, such as cancer, can evade such molecules very effectively. This poses an important problem since the rapid emergence of multidrug-resistance among microbes is one of the most pressing public health crises of our time-one that could claim more than 10 million lives and 100 trillion dollars annually by 2050. Several non-traditional antibiotics are now being developed that can survive in the face of adaptive drug resistance. One such versatile strategy is redox perturbation using quantum dot (QD) therapeutics. While redox molecules are nominally used by cells for intracellular signaling and other functions, specific generation of such species exogenously, using an electromagnetic stimulus (light, sound, magnetic field), can specifically kill the cells most vulnerable to such species. For example, recently QD therapeutics have shown tremendous promise by specifically generating superoxide intracellularly (using light as a trigger) to selectively eliminate a wide range of MDR pathogens. While the efficacy of such QD therapeutics was shown using in vitro studies, several apparent contradictions exist regarding QD safety and potential for clinical applications. In this review, we outline the design rules for creating specific QD therapies for redox perturbation; summarize the parameters for choosing appropriate materials, size, and capping ligands to ensure their facile clearance; and highlight a potential path forward towards developing this new class of radical QD therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542014 | PMC |
http://dx.doi.org/10.1186/s13036-019-0173-4 | DOI Listing |
Inorg Chem
January 2025
School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou 225002, China.
The interaction between electrocatalytic active centers and their support is essential to the electrocatalytic performance, which could regulate the electronic structure of the metal centers but requires precise design. Herein, we report on covalent grafting of graphene quantum dots (GQDs) on stepped TiO as a support to anchoring cobalt phosphide nanoparticles (CoP/GQD/S-TiO) for electrocatalytic hydrogen evolution reaction (HER). The covalent ester bonds between GQDs and TiO endow enlarged anchoring sites to achieve highly dispersed electroactive CoP nanoparticles but, more importantly, provide an efficient electron-transfer pathway from TiO to GQDs which could regulate the electronic structure of CoP.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Material Engineering, Lyuliang University, Lyuliang, 033000, P. R. China.
Innovative double-emission carbon dots (DE-CDs) were synthesized via a one-step hydrothermal method using fennel and m-phenylenediamine (m-PD) as precursors. These DE-CDs exhibited dual emission wavelengths at 432 and 515 nm under different excitations, making them highly versatile for fluorescence-based applications. The fluorescence of the DE-CDs was efficiently quenched by tetracycline (TC) through the inner filter effect (IFE), allowing for the construction of a sensitive dual-response fluorescent sensor.
View Article and Find Full Text PDFACS Nano
January 2025
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
Room temperature (RT) synthesized mixed bromine and chlorine CsPbBrCl perovskite quantum dots (Pe-QDs) offer notable advantages for blue quantum dot light-emitting diodes (QLEDs), such as cost-effective processing and narrow luminescence peaks. However, the efficiency of blue QLEDs using these RT-synthesized QDs has been limited by inferior crystallinity and deep defect presence. In this study, we demonstrate a precise approach to constructing high-quality gradient core-shell (CS) structures of CsPbBrCl QD through anion exchange.
View Article and Find Full Text PDFNanoscale
January 2025
4109 Newman & Wolfrom Laboratory, 100 W 18th Ave, Columbus, OH 43210, USA.
A variety of ZnCdS-based semiconductor nanoparticle heterostructures with extended exciton lifetimes were synthesized to enhance the efficacy of photocatalytic hydrogen production in water. Specifically, doped nanoparticles (NPs), as well as core/shell NPs with and without palladium and platinum co-catalysts, were solubilized into water using various methods to assess their efficacy for solar H fuel synthesis. The best results were obtained with low bandgap ZnCdS cores and ZnCdS/ZnS core/shell NPs with palladium co-catalysts.
View Article and Find Full Text PDFACS Sens
January 2025
Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
Over recent years, the LUMinescent AntiBody Sensor (LUMABS) system, utilizing bioluminescence resonance energy transfer (BRET), has emerged as a highly effective method for antibody detection. This system incorporates NanoLuc (Nluc) as the donor and fluorescent protein (FP) as the acceptor. However, the limited Stokes shift of FP poses a challenge, as it leads to significant spectral cross-talk between the excitation and emission spectra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!