Proliferation and migration of endothelial cells play an important role in many biological activities, and they can be regulated by various microenvironmental factors. In this paper, a novel microfluidic collective cell migration assay is developed to study endothelial cell migration and proliferation under combinations of three oxygen conditions: normoxia, oxygen gradient, and hypoxia and three medium compositions: normal growth medium, the medium with cytochalasin-D for actin polymerization inhibition, and with YC-1 for hypoxia-inducible factor (HIF) inhibition. The microfluidic device designed in the paper allows cell patterns formed with consistent dimensions using laminar flow patterning. In addition, stable oxygen gradients can be generated within the device by a spatially confined chemical reaction method. The device can be operated in conventional cell incubators with minimal chemical reagents and instrumentation for practical applications. The results show directional collective cell migration of the endothelial cells under the oxygen gradients for all the medium compositions. The directional behavior has never been discussed before, and indicates critical roles of oxygen gradients in guiding endothelial cell migration during various biological activities. The developed assay provides a practical yet powerful tool for further in vitro study of endothelial cell behaviors under various physiological microenvironments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546762PMC
http://dx.doi.org/10.1038/s41598-019-44594-5DOI Listing

Publication Analysis

Top Keywords

cell migration
20
endothelial cell
16
oxygen gradients
16
collective cell
12
study endothelial
12
cell
9
microfluidic collective
8
migration assay
8
proliferation migration
8
migration endothelial
8

Similar Publications

Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis.

View Article and Find Full Text PDF

LIN28B-mediated PI3K/AKT pathway activation promotes metastasis in colorectal cancer models.

J Clin Invest

January 2025

Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, United States of America.

Colorectal cancer (CRC) remains a leading cause of cancer death due to metastatic spread. LIN28B is overexpressed in 30% of CRCs and promotes metastasis, yet its mechanisms remain unclear. In this study, we genetically modified CRC cell lines to overexpress LIN28B, resulting in enhanced PI3K/AKT pathway activation and liver metastasis in mice.

View Article and Find Full Text PDF

Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.

View Article and Find Full Text PDF

CircZMYM2 Alleviates TGF-β1-Induced Proliferation, Migration and Activation of Fibroblasts via Targeting miR-199b-5p/KLF13 Axis.

Appl Biochem Biotechnol

January 2025

Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, No.154 Heping Road to Anshan, Tianjin City, 300052, People's Republic of China.

Dysregulated circular RNAs (circRNAs) has been revealed to be involved in pulmonary fibrosis progression. Herein, this study focused on exploring the function and mechanism of circRNA Zinc Finger MYM-Type Containing 2 (circZMYM2) on idiopathic pulmonary fibrosis (IPF) using transforming growth factor (TGF)-β1-stimulated fibroblasts. Human fibroblast cell lines IMR-90 and HFL1 were stimulated with TGF-β1 to mimic fibrosis condition in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!