The receptor for advanced glycation endproducts (RAGE) is critically involved in the pathobiology of chronic inflammatory diseases. Soluble forms of RAGE have been proposed as biomarkers of severity in inflammatory and metabolic conditions, and in monitoring therapeutic responses. The aim of the present study was to determine circulating levels of the soluble forms of RAGE in periodontitis and to evaluate the expression of cell-bound, full-length RAGE and its antagonist AGER1 locally, in gingival tissues. Periodontitis patients and periodontally healthy, sex- and age-matched controls (50 per group) were included. Serum levels of total soluble RAGE and cleaved RAGE (cRAGE) were significantly lower in periodontitis patients. Levels of the endogenous secretory esRAGE were similar in the two groups. cRAGE remained significantly lower in the periodontitis group following multiple adjustments, and had a statistically significant inverse correlation with body mass index and all periodontal parameters. In periodontitis patients, gene expression of full-length RAGE and of AGER1 were significantly higher in periodontitis-affected gingival tissues compared to healthy gingiva. Soluble forms of RAGE, particularly cRAGE, may serve as biomarkers for the presence and severity/extent of periodontitis, and may be implicated in its pathogenesis and its role as a systemic inflammatory stressor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547730 | PMC |
http://dx.doi.org/10.1038/s41598-019-44608-2 | DOI Listing |
Microbiol Spectr
January 2025
Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA.
Unlabelled: is an acid-fast, aerobic, non-motile, and biofilm-forming bacterium. The increasing prevalence of mycobacterial infections makes it necessary to find new methods to combat the resistance of bacteria to conventional antibiotics. is an emerging pathogen that is intrinsically drug resistant due to several factors, including an impermeable cell envelope, drug efflux pumps, target-modifying enzymes, and the ability to form thick, robust biofilms.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States.
Here we demonstrate how a biologically relevant molecule, riboflavin (vitamin B2), operates by a dual mode of action to effectively control crystallization of ammonium urate (NHHU), which is associated with cetacean kidney stones. In situ microfluidics and atomic force microscopy experiments confirm a strong interaction between riboflavin and NHHU crystal surfaces that substantially inhibits layer nucleation and spreading by kinetic mechanisms of step pinning and kink blocking. Riboflavin does not alter the distribution of tautomeric urate isomers, but its adsorption on NHHU crystal surfaces does interfere with the effects of minor urate tautomer by limiting its ability to induce NHHU crystal defects while also suppressing NHHU nucleation and inhibiting crystal growth by 80% at an uncharacteristically low modifier concentration.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Three composites based on Poly (meta-aminophenol) (PmAP), (3-aminopropyl) triethoxysilane (APTES) and graphene oxide (GO) were synthesized with initial GO dispersion of 3.3, 6.6, and 9.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India.
Listeriolysin O (LLO) is a potent membrane-damaging pore-forming toxin (PFT) secreted by the bacterial pathogen . LLO belongs to the family of cholesterol-dependent cytolysins (CDCs), which specifically target cholesterol-containing cell membranes to form oligomeric pores and induce membrane damage. CDCs, including LLO, harbor designated pore-forming motifs.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
February 2025
Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium.
Lithium-sulfur batteries are a promising candidate for the next generation of rechargeable batteries. Despite extensive research on this system over the last decade, a complete understanding of the phase transformations has remained elusive. Conventional in-situ powder X-ray diffraction has struggled to determine the unit cell and space group of the polysulfides formed during charge and discharge cycles due to the high solubility of these solid products in the liquid electrolyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!