Entropy rate is increased by several metabolic and thermodynamic abnormalities in neurodegenerative diseases (NDs). Changes in Gibbs energy, heat production, ionic conductance or intracellular acidity are irreversible processes impelling modifications of the entropy rate. The present review focuses on the thermodynamic implications in the reprogramming of cellular energy metabolism enabling in Parkinson's disease (PD) through the contrasting interplay of the molecular signaling pathways WNT/ β-catenin and PPARγ. In PD, WNT/β-catenin pathway is downregulated while PPARγ is upregulated. Thermodynamic behaviors of metabolic enzymes are modified by dysregulation of the canonical WNT/β-catenin pathway. Downregulation of WNT/β-catenin pathway leads to hypometabolism, oxidative stress and cell death through inactivation of glycolytic enzymes such as Glut, PKM2, PDK1, MCT-1, LDH-A but also to activation of PDH. In addition, in NDs, PPARγ is dysregulated even though it contributes to the regulation of several key circadian genes. PD processes may be considered as dissipative structures that exchange energy or matter with their environment far-from the thermodynamic equilibrium. Far-from-equilibrium thermodynamics are notions driven by circadian rhythms, which directly contribute to regulation of the molecular pathways WNT/β-catenin and PPARγ involved in the reprogramming of cellular energy metabolism enabling in Parkinson's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21775/cimb.031.021 | DOI Listing |
Curr Obes Rep
January 2025
Metabolism and Body Composition, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.
Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.
Funct Integr Genomics
January 2025
Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Physics, 845 W Taylor St, University of Illinois Chicago, Chicago, IL 60607, USA.
Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
Gualou-Xiebai-Banxia (GXB) decoction shows potential for treating myocardial ischemia (MI), although its underlying mechanism is not fully understood. In this study, a multimodal metabolomics approach, combining gas chromatography-mass spectrometry (GC-MS) and H-NMR, was employed to investigate the cardioprotective effects of GXB in a rat model of myocardial ischemia induced by ligation. ELISA assays and HE staining demonstrated that GXB effectively reduced myocardial injury, oxidative stress markers, and myocardial fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!