Protein arginine methylation is an important means by which protein function can be regulated. In the budding yeast, this modification is catalyzed by the major protein arginine methyltransferase Hmt1. Here, we provide evidence that the Hmt1-mediated methylation of Rpc31, a subunit of RNA polymerase III, plays context-dependent roles in tRNA gene transcription: under conditions optimal for growth, it positively regulates tRNA gene transcription, and in the setting of stress, it promotes robust transcriptional repression. In the context of stress, methylation of Rpc31 allows for its optimal interaction with RNA polymerase III global repressor Maf1. Interestingly, mammalian Hmt1 homologue is able to methylate one of Rpc31's human homologue, RPC32β, but not its paralogue, RPC32α. Our data led us to propose an efficient model whereby protein arginine methylation facilitates metabolic economy and coordinates protein-synthetic capacity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6549136PMC
http://dx.doi.org/10.26508/lsa.201800261DOI Listing

Publication Analysis

Top Keywords

protein arginine
16
trna gene
12
gene transcription
12
arginine methylation
12
methylation protein
8
methylation rpc31
8
rna polymerase
8
polymerase iii
8
protein
5
methylation
5

Similar Publications

Hemophagocytic lymphohistiocytosis (HLH) is a rare but aggressive and potentially lethal hyperinflammatory syndrome characterized by pathologic immune activation and excessive production of proinflammatory cytokines leading to tissue damage and multisystem organ failure. There is an urgent need for the discovery of novel targets and development of therapeutic strategies to treat this rare but deadly syndrome. Protein Arginine Methyltransferase 5 (PRMT5) mediates T cell-based inflammatory responses, making it a potential actionable target for the treatment of HLH.

View Article and Find Full Text PDF

Increasing evidence supports the presence of oxytocin deficiency (OXT-D) in patients with hypopituitarism and hypothalamic damage (HHD), that might be associated with neuropsychological deficits and sexual dysfunction, leading to worse quality of life (QoL). Therefore, identifying a provocative test to diagnose an OXT-D will be important. Corticotropin-releasing hormone (CRH) is a candidate for such a test as it increases oxytocin secretion in animal models.

View Article and Find Full Text PDF

The MCM motor of the eukaryotic replicative helicase is loaded as a double hexamer onto DNA by the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ATP binding supports formation of the ORC-Cdc6-Cdt1-MCM (OCCM) helicase-recruitment complex where ORC-Cdc6 and one MCM hexamer form two juxtaposed rings around duplex DNA. ATP hydrolysis by MCM completes MCM loading but the mechanism is unknown.

View Article and Find Full Text PDF

FBXW7 metabolic reprogramming inhibits the development of colon cancer by down-regulating the activity of arginine/mToR pathways.

PLoS One

January 2025

Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.

FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.

View Article and Find Full Text PDF

PRMT6 promotes colorectal cancer progress via activating MYC signaling.

J Transl Med

January 2025

Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, JiNan, 250012, China.

Colorectal cancer (CRC) remains a major global health challenge, with high rates of incidence and mortality. This study investigates the role of protein arginine methyltransferase 6 (PRMT6) as an oncogene in CRC and its mechanistic involvement in tumor progression. We found that PRMT6 is significantly overexpressed in CRC tissues compared to adjacent normal tissues and is associated with poorer patient survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!