Endothelial cell death is linked to vascular diseases such as atherosclerosis and tissue ischemia. miRNA-17-92 (miR-17-92) is a multiple functional oncogenic miRNA cluster which plays vital roles in tumor angiogenesis and tissue development. However, its role in regulation of endothelial cell ferroptosis remains unclear. In this study, we revealed that miR-17-92 protects endothelial HUVEC cells from erastin-induced ferroptosis. miR-17-92 overexpression significantly reduced erastin-induced growth inhibition and ROS generation of HUVEC cells. Furthermore, Zinc lipoprotein A20, a validated target of miR-17-92, was identified as a novel regulator of endothelial cell ferroptosis. Lentivirus mediated A20 overexpression increased ROS generation and enhanced erastin-induced ferroptosis, whereas A20 knockdown inhibited erastin-induced ferroptosis. Mechanistic studies revealed that erastin-induced ferroptosis is associated with GPX4 downregulation and ACSL4 upregulation. miR-17-92 overexpression or A20 inhibition increased the ACSL4 expression in HUVEC cells. A20 was identified to directly with and regulate ACSL4 expression by immunoprecipitation. It suggests that the A20-ACSL4 axis plays important roles in erastin-induced endothelial ferroptosis. In conclusion, this study revealed a novel mechanism through which miR-17-92 protects endothelial cells from erastin-induced ferroptosis by targeting the A20-ACSL4 axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2019.05.147 | DOI Listing |
Comb Chem High Throughput Screen
January 2025
Department of Cardiology, Tianjin First Center Hospital, Tianjin, China.
Background: Maslinic acid (MA), a pentacyclic triterpenoid compound derived from leaves and fruits of Olea europaea, bears multi-pharmacological properties. Our previous studies found that MA exerted a cardioprotective effect by modulating oxidative stress, inflammation, and apoptosis during myocardial ischemia-reperfusion injury (MIRI). Nevertheless, data regarding the anti-ferroptosis effects of MA on MI/RI remains unidentified.
View Article and Find Full Text PDFJ Cancer
January 2025
The Colorectal and Anal Surgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China.
Thymidylate synthase (TYMS) is a key regulatory enzyme in DNA synthesis. We identified the biological effect and molecular mechanisms of TYMS in colorectal cancer (CRC). We employed western blot and immunohistochemistry for the assessment of TYMS expression in CRC samples.
View Article and Find Full Text PDFBiotechnol Appl Biochem
December 2024
Department of Thoracic Surgery, Affiliated Sanming First Hospital of Fujian Medical University Sanming, Fujian, China.
Non-small cell lung cancer (NSCLC) is the most pervasive sort of lung cancer with deadly outcome. According to recent studies, a number of neoplastic disorders and ferroptosis are intimately connected. This study aims to identify the role of key ferroptosis-related gene (protein kinase AMP-activated catalytic subunit alpha 2, PRKAA2) and explore new directions for the diagnosis and treatment of NSCLC.
View Article and Find Full Text PDFBiol Direct
December 2024
Department of Gynaecology and Obstetrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China.
This study explores the epigenetic mechanism of MLL1 regulating trophoblast ferroptosis in preeclampsia (PE). A murine model of PE was established, and HTR-8/SVneo cells were induced by Erastin to establish an in vitro cell model. GSH, MDA, Fe, and ROS levels were measured to assess ferroptosis.
View Article and Find Full Text PDFPhytother Res
December 2024
Department of Traditional Chinese Medicine, Guangzhou Institute of Cardiovascular Disease, State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
Myocardial ischemia-reperfusion (I/R) injury has emerged as an increasingly serious cardiovascular health concern worldwide, with ferroptosis playing a pivotal role as the underlying pathogenic process. This study aimed to investigate the pharmacological effect and mechanism of Ilexgenin A on cardiomyocyte ferroptosis induced by myocardial I/R injury. In vivo, we established a murine anterior descending artery ligation/recanalization model to evaluate the cardioprotective effect of Ilexgenin A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!