Terephthalonitrile (TPN) was directly produced from polyethylene terephthalate (PET) plastic via catalytic fast pyrolysis with ammonia. The optimal condition for producing TPN was over 1 g γ-AlO-2 wt% catalyst at 500 °C under carrier gas (50% NH and 50% N) with yield of nitriles and TPN of 58.1 and 52.3 C%, respectively. The selectivity of TPN in the nitriles was around 90%. Meanwhile, a bit of aromatics, benzonitrile, acetonitrile were also produced as by-products with the total yields of less than 3 C%. The catalyst deactivated slightly after 5 cycles. Possible reaction routes were proposed and it was found that terephthalic acid, benzoic acid, related esters and amides were the major intermediates from PET to nitriles. Acetonitrile could be produced from acetaldehyde and its corresponding imines. In addition, 32.1 C% TPN with high purity (>95%) was obtained via freezing recrystallization. Catalytic pyrolysis with ammonia process was a promising technology for converting waste PET plastics to TPN. This study provided a new method for producing N-containing chemicals from polyester plastics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2019.05.011 | DOI Listing |
J Colloid Interface Sci
January 2025
Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China. Electronic address:
Electrocatalytic NO reduction (NORR) to NH represents a promising approach for converting hazardous NO waste gases into high-value NH products under ambient conditions. However, exploring stable, low-cost, and highly efficient catalysts to enhance the NO-to-NH conversion process remains a significant challenge. Herein, through systematic computational studies based on density functional theory (DFT), we rationally designed transition metal triatomic cluster supported on graphdiyne (TM/GDY) as potential single-cluster catalysts for high-performance NORR.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, ID 83415, USA.
The ubiquitous two-step Michaelis-Menten and Temkin-Boudart reaction mechanisms are extended to include the influence of the catalyst electronic subsystem in a 5-step mechanism. The resulting kinetic equation provides an alternative explanation for the well-known volcano-shaped dependence found in catalysis. The equilibrium constants of fast electronic steps are highlighted for their influence on adsorption and desorption through the relative concentration of charged versus neutral intermediates.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.
Int J Biol Macromol
January 2025
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China. Electronic address:
In this work, a fast signal amplification system mediated by self-replicating catalytic hairpin self-assembly (SCHA) was established for microRNA-155 using near-infrared DNA-Ag Nanoclusters (DNA-AgNCs) as fluorescence signal output. Among them, two fission target-like DNA sequences are merged into two hairpin DNA H1 and H2, and the AgNCs template sequence is designed at the sticky end of H1 and H2. The target can be recycled in the system to form a double-stranded DNA structure (H1-H2), which will detach the H1/H2-AgNCs from the surface of the polypyrrole nanoparticles (PPy NPs) and cause the near-infrared fluorescence signal of DNA-AgNCs to be restored.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!