Background: Nebulised medical aerosols are designed to deliver drugs to the lungs to aid in the treatment of respiratory diseases. However, an unintended consequence is the potential for fugitive emissions during patient treatment, which may pose a risk factor in both clinical and homecare settings.
Methods: The current study examined the potential for fugitive emissions, using albuterol sulphate as a tracer aerosol during high-flow therapy. A nasal cannula was connected to a head model or alternatively, a interface was connected to a tracheostomy tube in combination with a simulated adult and paediatric breathing profile. Two aerodynamic particle sizers (APS) recorded time-series aerosol concentrations and size distributions at two different distances relative to the simulated patient.
Results: The results showed that the quantity and characteristics of the fugitive emissions were influenced by the interface type, patient type and supplemental gas-flow rate. There was a trend in the adult scenarios; as the flow rate increased, the fugitive emissions and the mass median aerodynamic diameter (MMAD) of the aerosol both decreased. The fugitive emissions were comparable when using the adult breathing profiles for the nasal cannula and tracheostomy interfaces; however, there was a noticeable distinction between the two interfaces when compared for the paediatric breathing profiles. The highest recorded aerosol concentration was 0.370 ± 0.046 mg m from the tracheostomy interface during simulated paediatric breathing with a gas-flow rate of 20 L/min. The averaged MMAD across all combinations ranged from 1.248 to 1.793 µm by the APS at a distance of 0.8 m away from the patient interface.
Conclusions: Overall, the results highlight the potential for secondary inhalation of fugitive emissions released during simulated aerosol treatment with concurrent high-flow therapy. The findings will help in developing policy and best practice for risk mitigation from fugitive emissions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6630289 | PMC |
http://dx.doi.org/10.3390/pharmaceutics11060254 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada.
Limiting climate change to targets enshrined in the Paris Agreement will require both deep decarbonization of the energy system and the deployment of carbon dioxide removal at potentially large scale (gigatons of annual removal). Nations are pursuing direct air capture to compensate for inertia in the expansion of low-carbon energy systems, decarbonize hard-to-abate sectors, and address legacy emissions. Global assessments of this technology have failed to integrate factors that affect net capture and removal cost, including ambient conditions like temperature and humidity, as well as emission factors of electricity and natural gas systems.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Indian Institute of Technology-Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India.
Observation-based verification of regional/national methane (CH) emission trends is crucial for transparent monitoring and mitigation strategy planning. Although surface observations track the global and sub-hemispheric emission trends well, their sparse spatial coverage limits our ability to assess regional trends. Dense satellite observations complement surface observations, offering a valuable means to validate emission trends, especially in regions where emissions changes are substantial but debated.
View Article and Find Full Text PDFMin Metall Explor
November 2024
Miller Consulting, Spokane, WA, USA.
Occupational exposures to respirable dusts and respirable crystalline silica (RCS) is well established as a health hazard in many industries including mining, construction, and oil and gas extraction. The U.S.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
Bisphenol A (BPA) is a high-production-volume plastic chemical, with ∼98% of its usage in China allocated to producing polycarbonate and epoxy resin, and its fugitive release threatens ecosystems. However, knowledge of its anthropogenic cycles, environmental emissions, and ecological risks remains incomplete, hindering effective plastic lifecycle management. Herein, material flow analysis, multimedia environmental modeling, and ecological risk assessment were integrated to comprehensively map BPA dynamics in China.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Explicit ApS, Virum, Denmark.
The development of new measurement methods to assess fugitive methane (CH) emissions from industrial sources is needed to improve our understanding of these emissions and promote mitigation practices. Drone-based measurement methods have rapidly emerged in the last few years, however, there are still challenges in finding accurate drone-based measurement approaches and assessing their suitability. This study aims to validate and demonstrate a drone-based method that simultaneously measures atmospheric gas concentrations and wind vectors while flying downwind of the emission source.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!