Bisphenol A dicyanate (BADCy) resin microparticles were prepared by precipitation polymerization synthesis and were homogeneously dispersed in a BADCy prepolymer matrix to prepare a BADCy self-reinforced composites. The active functional groups of the BADCy resin microparticles were characterized by Fourier transform infrared (FT-IR) spectroscopy. The results of an FT-IR curve showed that the BADCy resin microparticles had a triazine ring functional group and also had an active reactive group -OCN, which can initiate a reaction with the matrix. The structure of the BADCy resin microparticles was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). From the TEM results, the BADCy resin microparticles dispersed in the solvent were nano-sized and distributed at 40-60 nm. However, from the SEM results, agglomeration occurred after drying, the BADCy resin particels were micron-sized and distributed between 0.3 μm and 0.6 μm. The BADCy resin prepolymer was synthesized in our laboratory. A BADCy self-reinforced composite was prepared by using BADCy resin microparticles as a reinforcement phase. This corresponds to a composite in which the matrix and reinforcement phase are made from different morphologies of the same monomer. The DSC curve showed that the heat flow of the microparticles is different from the matrix during the curing reaction, this means the cured materials should be a microscopic two-phase structure. The added BADCy resin microparticles as reaction sites induced the formation of a more complete and regular cured polymer structure, optimizing the cross-linked network as well as increasing the interplay between the BADCy resin microparticles and prepolymer matrix. Relative to the neat BADCy resin material, the tensile strength, flexural strength, compressive strength and impact strength increased by 98.1%, 40.2%, 27.4%, and 85.4%, respectively. A particle toughening mechanism can be used to explain the improvement of toughness. The reduction in the dielectric constant showed that the cross-linked network of the self-reinforced composite was more symmetrical and less polar than the neat resin material, which supports the enhanced mechanical properties of the self-reinforced composite. In addition, the thermal behavior of the self-reinforced composite was characterized by thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA). The results of DMTA also establishes a basis for enhancing mechanical properties of the self-reinforced composite.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631108PMC
http://dx.doi.org/10.3390/polym11060950DOI Listing

Publication Analysis

Top Keywords

badcy resin
44
resin microparticles
32
self-reinforced composite
20
badcy
14
cross-linked network
12
resin
12
microparticles
9
self-reinforced composites
8
prepolymer matrix
8
badcy self-reinforced
8

Similar Publications

High Thermal Resistance of Epoxy/Cyanate Ester Hybrids Incorporating an Inorganic Double-Decker-Shaped Polyhedral Silsesquioxane Nanomaterial.

Molecules

September 2022

Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.

In this study, we prepared a difunctionalized cyanate ester double-decker silsesquioxane (DDSQ-OCN) cage with a char yield and thermal decomposition temperature () which were both much higher than those of a typical bisphenol A dicyanate ester (BADCy, without the DDSQ cage) after thermal polymerization. Here, the inorganic DDSQ nanomaterial improved the thermal behavior through a nano-reinforcement effect. Blending the inorganic DDSQ-OCN cage into the epoxy resin improved its thermal and mechanical stabilities after the ring-opening polymerization of the epoxy units during thermal polymerization.

View Article and Find Full Text PDF

Bisphenol A dicyanate (BADCy) resin microparticles were prepared by precipitation polymerization synthesis and were homogeneously dispersed in a BADCy prepolymer matrix to prepare a BADCy self-reinforced composites. The active functional groups of the BADCy resin microparticles were characterized by Fourier transform infrared (FT-IR) spectroscopy. The results of an FT-IR curve showed that the BADCy resin microparticles had a triazine ring functional group and also had an active reactive group -OCN, which can initiate a reaction with the matrix.

View Article and Find Full Text PDF

Semi-Interpenetrating Polymer Networks Based on Cyanate Ester and Highly Soluble Thermoplastic Polyimide.

Polymers (Basel)

May 2019

Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China.

Thermoplastic polyimide (TPI) was synthesized via a traditional one-step method using 2,3,3',4'-biphenyltetracarboxylic dianhydride (3,4'-BPDA), 4,4'-oxydianiline (4,4'-ODA), and 2,2'-bis(trifluoromethyl)benzidine (TFMB) as the monomers. A series of semi-interpenetrating polymer networks (semi-IPNs) were produced by dissolving TPI in bisphenol A dicyanate (BADCy), followed by curing at elevated temperatures. The curing reactions of BADCy were accelerated by TPI in the blends, reflected by lower curing temperatures and shorter gelation time determined by differential scanning calorimetry (DSC) and rheological measurements.

View Article and Find Full Text PDF

A new cyanate ester resin-based composite with higher toughness and thermal conductivity was developed. First, a poly(-butyl acrylate)/poly(methyl methacrylate--acrylamide) (PBMAM) core-shell structured latex was prepared by seeded emulsion polymerization. Second, hexagonal boron nitride (h-BN) particles were modified by a surface coupling agent, 3-(2-amino ethyl amino)propyl trioxysilane, to improve the dispersion in cyanate ester resin (BADCy).

View Article and Find Full Text PDF

Effect of chemical structure and network formation on physical properties of di(cyanate ester) thermosets.

ACS Appl Mater Interfaces

February 2012

National Research Council/Air Force Research Laboratory, Propulsion Directorate, Edwards AFB, CA, USA.

Key physical properties of three dicyanate ester monomers, bisphenol A dicyanate (BADCy), bisphenol E dicyanate (LECy), and the dicyanate of a silicon-containing analogue of bisphenol A (SiMCy) were investigated as a function of cyanurate conversion at conversions ranging from approximately 70% to greater than 90% in order to assess the range of applicability of both traditional and more unusual structure-property-process relationships known for cyanate ester resins. A more complete understanding of these relationships is essential for the continued development of cyanate ester resins and their composites for a wide variety of aerospace applications. The degree of cure in each system was determined by differential scanning calorimetry (DSC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!