Subendothelial cells (pericytes) are the clonogenic, multipotent and self-renewing skeletal stem cells (SSCs) found in bone marrow (BM) stroma. They express genes maintaining hematopoietic stem cell (HMC) niche identity and, transplanted in immunocompromised mice, organize the hematopoietic microenvironment (HME) generating humanized bone/BM ossicles. To create a mouse model of hematogenous metastasis of human prostate cancer (PC) cells to human bone/BM, we injected PC cells in the blood circulatory system of Severe Combined Immunodeficiency (SCID)/beige mice bearing heterotopic ossicles. Results indicate that PC cells could efficiently home to mice-implanted extraskeletal BM ossicles, but were not able to colonize mice skeletal segments. In humanized bone/BM ossicles, early foci of PC cells occupied a perisinusoidal position, in close contact with perivascular stromal cells. These findings demonstrate the importance of the SSC compartment in recreating a suitable environment to metastatic PC cells. Our data support the hypothesis that BM SSCs committed to a pericyte fate can specify for homing niches of PC cells, suggesting an involvement of specific interactions with subendothelial stromal cells in extravasation of circulating metastatic PC cells to BM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627911 | PMC |
http://dx.doi.org/10.3390/cancers11060763 | DOI Listing |
Arthropod Struct Dev
January 2025
Zoological Museum, University of Kiel, Hegewischstrasse 3, 24105, Kiel, Germany.
The objective of this study is to gain a better understanding of the not well understood egg-transportation mechanisms through the female reproductive systems of crabs. For this, Carcinus maenas was chosen as a model to study the cuticular epithelium underlying the cuticle of the vagina and the ventral seminal receptacle. This cuticular epithelium is investigated by performing histochemical and ultrastructural analyses of the epithelial cells.
View Article and Find Full Text PDFAm J Clin Pathol
January 2025
Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
Objectives: Immune checkpoint inhibitors have revolutionized treatment of platinum-refractory advanced bladder cancer, offering hope where options are limited. Response varies, however, influenced by factors such as the tumor's immune microenvironment and prior therapy. Muscle-invasive bladder cancer (MIBC) is stratified into molecular subtypes, with distinct clinicopathologic features affecting prognosis and treatment.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Department of Medical Physics, Osaka Heavy Ion Therapy Center, Otemae, Chuo-ku, Osaka, Osaka, 5400008, JAPAN.
Objective Applying carbon ion beams, which have high linear energy transfer and low scatter within the human body, to Spatially Fractionated Radiation Therapy (SFRT) could benefit the treatment of deep-seated or radioresistant tumors. This study aims to simulate the dose distributions of spatially fractionated beams (SFB) to accurately determine the delivered dose and model the cell survival rate following SFB irradiation. Approach Dose distributions of carbon ion beams are calculated using the Triple Gaussian Model.
View Article and Find Full Text PDFJ Med Chem
January 2025
European Institute for Molecular Imaging (EIMI), University of Muenster, Roentgenstr. 16, 48149 Muenster, Germany.
The P2X4 receptor is implicated in various pathological conditions, including neuropathic pain and cancer. This study reports the development of 1,4-naphthodiazepinedione-based P2X4 receptor antagonists aimed at both therapeutic applications and potential use as PET tracers for imaging P2X4 receptor expression in cancer. Structure-activity relationship studies aided by docking studies and molecular dynamics simulations led to a series of compounds with potent P2X4 receptor antagonism, promising inhibition of interleukin-1β release in THP-1 cells and suitability for radiolabeling with fluorine-18.
View Article and Find Full Text PDFAppl Physiol Nutr Metab
January 2025
Brock University, Department of Health Sciences, St Catharines, Ontario, Canada.
The worldwide epidemic of obesity has drastically worsened with the increase in more sedentary lifestyles and increased consumption of fatty foods. Increased blood free fatty acids (FFAs), often observed in obesity, leads to impaired insulin action, and promotes the development of insulin resistance and Type 2 diabetes mellitus (T2DM). JNK, IKK-NF-κB, and STAT3 are known to be involved in skeletal muscle insulin resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!