Peat carbon accumulation is controlled by both large scale factors, such as climate and hydrological setting, and small scale factors, such as microtopography and plant community. These small scale factors commonly vary within peatlands and can cause variation in biogeochemical traits and carbon accumulation within the same site. To understand these within-site variations, we investigated long term carbon accumulation, peat decomposition, biogeochemistry of pore water and plant macrofossils along a transect in an ombrotrophic bog in southern Patagonia. An additional question we addressed is how historical deposition of volcanic ash on the peatland has affected its carbon balance. Variability in plant community and water table led to differences in long term peat and carbon accumulation (peat moss > cushion plant), organic matter decomposition (cushion plant > peat moss), and methane production (peat moss > cushion plant). Macrofossil analysis and radiocarbon dating indicated a relationship between plant community and carbon accumulation or decomposition during the historical succession of vegetation in the peatland. C/N ratio and isotopic signatures reflected variability in plant community as litter source, and DOC concentrations were controlled by humification level. Volcanic ash deposition had only limited effect on plant composition, but it was associated with increased decomposition in overlying peat layers. This study highlights the importance of understanding how plant communities develop, as changes in communities could significantly affect the potential of ombrotrophic peatlands as C sink.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.05.310 | DOI Listing |
Water Res
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
The flow through the grit chamber is non-biochemically treated wastewater, which contains microorganisms mainly from the source of wastewater generation. There are limited reports on aerosol particles generated by grit chambers compared with those produced by biochemical treatment tanks. This study analyzed the fugitive characteristics of aerosol particles produced in grit chambers at nine wastewater treatment plants in three regions of China.
View Article and Find Full Text PDFNew Phytol
January 2025
School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
The partitioning of photosynthate among various forest carbon pools is a key process regulating long-term carbon sequestration, with allocation to aboveground woody biomass carbon (AGBC) in particular playing an outsized role in the global carbon cycle due to its slow residence time. However, directly estimating the fraction of gross primary productivity (GPP) that goes to AGBC has historically been difficult and time-consuming, leaving us with persistent uncertainties. We used an extensive dataset of tree-ring chronologies co-located at flux towers to assess the coupling between AGBC and GPP, calculate the fraction of fixed carbon that is allocated to AGBC, and understand the drivers of variability in this fraction.
View Article and Find Full Text PDFJ Occup Health
January 2025
Department of Environmental Health, University of Fukui School of Medical Science, Eiheiji, Fukui, Japan.
Objectives: Many chemicals have been used for industrial purposes, and some of them are carcinogenic to humans. However, their molecular mechanisms have not been well understood. Reactive oxygen species are generated from industrial chemicals and contribute to carcinogenesis.
View Article and Find Full Text PDFmBio
January 2025
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi, China.
Soil microbial diversity and community life strategies are crucial for nutrient cycling during vegetation restoration. Although the changes in topsoil microbial communities during restoration have been extensively studied, the structure, life strategies, and function of microbial communities in the subsoil remain poorly understood, especially regarding their role in nutrient cycling during vegetation restoration. In this study, we conducted a comprehensive investigation of the changes in the soil microbial community, assembly process, life strategies, and nutrient cycling functional genes in soil profiles (0-100 cm) across a 36 year chronosequence (5, 15, 28, and 36 years) of fenced grassland and one grazing grassland on the Loess Plateau of China.
View Article and Find Full Text PDFToxics
January 2025
School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
Per- and polyfluoroalkyl substances (PFASs) have been widely used in daily life but they cause certain impacts on the environment due to their unique carbon-fluorine chemical bonds that are difficult to degrade in the environment. Toxicological studies on PFASs and their alternatives have mainly focused on vertebrates, while terrestrial and aquatic invertebrates have been studied to a lesser extent. As invertebrates at the bottom of the food chain play a crucial role in the whole ecological chain, it is necessary to investigate the toxicity of PFASs to invertebrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!