A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ozone disinfection of chlorine-resistant bacteria in drinking water. | LitMetric

Ozone disinfection of chlorine-resistant bacteria in drinking water.

Water Res

Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

Published: September 2019

The wide application of chlorine disinfectant for drinking water treatment has led to the appearance of chlorine-resistant bacteria, which pose a severe threat to public health. This study was performed to explore the physiological-biochemical characteristics and environmental influence (pH, temperature, and turbidity) of seven strains of chlorine-resistant bacteria isolated from drinking water. Ozone disinfection was used to investigate the inactivation effect of bacteria and spores. The DNA concentration and cell surface structure variations of typical chlorine-resistant spores (Bacillus cereus spores) were also analysed by real-time qPCR, flow cytometry, and scanning electron microscopy to determine their inactivation mechanisms. The ozone resistance of bacteria (Aeromonas jandaei < Vogesella perlucida < Pelomonas < Bacillus cereus < Aeromonas sobria) was lower than that of spores (Bacillus alvei < Lysinibacillus fusiformis < Bacillus cereus) at an ozone concentration of 1.5 mg/L. More than 99.9% of Bacillus cereus spores were inactivated by increasing ozone concentration and treatment duration. Moreover, the DNA content of Bacillus cereus spores decreased sharply, but approximately 1/4 of the target genes remained. The spore structure exhibited shrinkage and folding after ozone treatment. Both cell structures and gene fragments were damaged by ozone disinfection. These results showed that ozone disinfection is a promising method for inactivating chlorine-resistant bacteria and spores in drinking water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2019.05.014DOI Listing

Publication Analysis

Top Keywords

chlorine-resistant bacteria
12
drinking water
12
ozone disinfection
8
bacteria
5
chlorine-resistant
4
disinfection chlorine-resistant
4
bacteria drinking
4
water wide
4
wide application
4
application chlorine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!