Malfunction of the liver is a central factor in metabolic disease. Glucose production by liver is complex and controlled via indirect mechanisms; insulin regulates adipose tissue lipolysis, and free fatty acids in turn regulate liver glucose output. This latter concept is confirmed by studies in L-Akt-Foxo1 knockout mice. The adipocyte is a likely locus of hepatic insulin resistance. Also, kidneys play a role in regulating glucose production; denervated kidneys abrogate the effect of fat feeding to cause insulin resistance. Glucose itself is an important regulator of liver metabolism ("glucose effectiveness"); after entering liver, glucose is phosphorylated and can be exported as lactate. Using the dynamic glucose/lactate relationship, we have been able to estimate glucose effectiveness in intact animals and human subjects. Families have been identified with a glucokinase regulatory protein defect; modeling demonstrates elevated glucokinase activity. Insulin clearance by liver is highly variable among normal individuals, and is under environmental control: high fat diet reduces clearance by 30%. Liver insulin clearance is significantly lower in African American (AA) adults and children compared to European American participants, accounting for fasting hyperinsulinemia in AA. We hypothesize that reduced hepatic insulin clearance causes peripheral insulin resistance and increased Type 2 diabetes in AA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216693 | PMC |
http://dx.doi.org/10.1016/j.metabol.2019.05.011 | DOI Listing |
Nat Metab
January 2025
Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China.
Skeletal muscle is a critical organ in maintaining homoeostasis against metabolic stress, and histone post-translational modifications are pivotal in those processes. However, the intricate nature of histone methylation in skeletal muscle and its impact on metabolic homoeostasis have yet to be elucidated. Here, we report that mitochondria-rich slow-twitch myofibers are characterized by significantly higher levels of H3K36me2 along with repressed expression of Kdm2a, an enzyme that specifically catalyses H3K36me2 demethylation.
View Article and Find Full Text PDFSci Rep
January 2025
School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.
View Article and Find Full Text PDFNat Med
January 2025
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
Sleep tests commonly diagnose sleep disorders, but the diverse sleep-related biomarkers recorded by such tests can also provide broader health insights. In this study, we leveraged the uniquely comprehensive data from the Human Phenotype Project cohort, which includes 448 sleep characteristics collected from 16,812 nights of home sleep apnea test monitoring in 6,366 adults (3,043 male and 3,323 female participants), to study associations between sleep traits and body characteristics across 16 body systems. In this analysis, which identified thousands of significant associations, visceral adipose tissue (VAT) was the body characteristic that was most strongly correlated with the peripheral apnea-hypopnea index, as adjusted by sex, age and body mass index (BMI).
View Article and Find Full Text PDFJ Nutr Biochem
January 2025
Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA. Electronic address:
Diabetes is a global health issue affecting over 6% of the world and 11 % of the US population. It is closely linked to insulin resistance, a pivotal factor in Type 2 diabetes development. This review explores a promising avenue for addressing insulin resistance through the lens of Milk-Derived Bioactive Peptides (MBAPs).
View Article and Find Full Text PDFIntroduction: Some studies have demonstrated the effect of the rs7903146 genetic variant on weight response after different dietary strategies. The objective of our study was to evaluate the role of this genetic variant of the TCF7L2 gene on weight loss and diabetes mellitus progression following a partial meal replacement (pMR) hypocaloric diet.
Methods: We conducted an interventional study in 214 subjects with obesity and a body mass index (BMI) > 35 kg/m².
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!