Metal-driven self-assembly is one of the most effective approaches to lucidly design a large range of discrete 2D and 3D coordination architectures/complexes. Palladium(II)-based self-assembled coordination architectures are usually prepared by using suitable metal components, in either a partially protected form (PdL') or typical form (Pd; charges are not shown), and designed ligand components. The self-assembled molecules prepared by using a metal component and only one type of bi- or polydentate ligand (L) can be classified in the homoleptic series of complexes. On the other hand, the less explored heteroleptic series of complexes are obtained by using a metal component and at least two different types of non-chelating bi- or polydentate ligands (such as L and L ). Methods that allow the controlled generation of single, discrete heteroleptic complexes are less understood. A survey of palladium(II)-based self-assembled coordination cages that are heteroleptic has been made. This review article illustrates a systematic collection of such architectures and credible justification of their formation, along with reported functional aspects of the complexes. The collected heteroleptic assemblies are classified here into three sections: 1) [(PdL') (L ) (L ) ]-type complexes, in which the denticity of L and L is equal; 2) [(PdL') (L ) (L ) ]-type complexes, in which the denticity of L and L is different; and 3) [Pd (L ) (L ) ]-type complexes, in which the denticity of L and L is equal. Representative examples of some important homoleptic architectures are also provided, wherever possible, to set a background for a better understanding of the related heteroleptic versions. The purpose of this review is to pave the way for the construction of several unique heteroleptic coordination assemblies that might exhibit emergent supramolecular functions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201900831DOI Listing

Publication Analysis

Top Keywords

palladiumii-based self-assembled
12
]-type complexes
12
complexes denticity
12
heteroleptic coordination
8
coordination architectures
8
self-assembled coordination
8
metal component
8
bi- polydentate
8
series complexes
8
denticity equal
8

Similar Publications

Enantiomer-Dependent Supramolecular Antibacterial Therapy for Drug-Resistant Bacterial Keratitis.

Langmuir

January 2025

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.

Bacteria have the potential to exhibit divergent stereochemical preferences for different levels of chiral structures, including from molecule, supramolecule, to nanomicroscale helical structure. Accordingly, the structure-activity relationship between chirality and bactericidal activity remains uncertain. In this study, we seek to understand the multivalent molecular chirality effect of chiral supramolecular polymers on antibacterial activity.

View Article and Find Full Text PDF

Recent years have witnessed the rapid growth of combination therapy for the treatment of cancer. Chemo and antisense DNA therapies are two clinically proven and efficient treatment modalities for cancer. However, direct delivery of both chemo and antisense oligonucleotides into the cancerous cells is challenging and hence there is a high demand for the development of new strategies that permit the direct delivery of chemo and antisense therapeutic agents in a targeted fashion.

View Article and Find Full Text PDF

Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully.

View Article and Find Full Text PDF

Organelle targeting is a useful approach in drug development for cancer therapy. Peptide amphiphiles are good candidates for targeting specific organelles because they can be engineered into a wide range of molecular structures, enabling customization for specific functional needs. We have developed a peptide amphiphile, C16-(EY)3, that can respond to tyrosine kinase activity and undergo phosphorylation inside cancer cells.

View Article and Find Full Text PDF

Cota is a lipidated dual GLP-1 and Glucagon receptor agonist that was investigated for the treatment of various metabolic diseases, it is designed for once daily subcutaneous administration. Invasive daily injections often result in poor patient compliance with chronic disease, and here, we demonstrate an innovative strategy of encapsulating reversible cota self-assembled fibers within an in-situ forming depot of low molecular weight poly(lactic-co-glycolic) acid (LWPLGA) for sustained delivery GLP-1 and Glucagon receptor agonist with controlled burst release. This could be a suitable alternative to other sustained delivery strategies for fibrillating peptides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!