AI Article Synopsis

  • The zebrafish embryo is a valuable in vivo model for studying intercellular interactions and protein localization through whole-mount immunohistochemistry and immunofluorescence.
  • Accurate mapping of proteins in three-dimensional space can be challenging, especially when utilizing antibodies that are incompatible with the same technique.
  • The described method allows for sequential application of immunofluorescence and immunohistochemistry on individual cryosections of early-stage zebrafish embryos, enabling precise identification of multiple protein targets at the single-cell level.

Article Abstract

Investigation of intercellular interactions often requires discrete labeling of specific cell populations and precise protein localization. The zebrafish embryo is an excellent tool for examining such interactions with an in vivo model. Whole-mount immunohistochemical and immunofluorescence assays are frequently applied in zebrafish embryos to assess protein expression. However, it can be difficult to achieve accurate mapping of co-localized proteins in three-dimensional space. In addition, some studies may require the use of two antibodies that are not compatible with the same technique (e.g., antibody 1 is only suitable for immunohistochemistry and antibody 2 is only suitable for immunofluorescence). The purpose of the method described herein is to perform sequential immunofluorescence and/or immunohistochemistry on individual cryosections derived from early-stage zebrafish embryos. Here we describe the use of sequential rounds of immunofluorescence, imaging, immunohistochemistry, imaging for a single cryosection in order to achieve precise identification of protein expression at the single-cell level. This methodology is suitable for any study in early-stage zebrafish embryos that requires accurate identification of multiple protein targets in individual cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291005PMC
http://dx.doi.org/10.3791/59344DOI Listing

Publication Analysis

Top Keywords

zebrafish embryos
16
sequential immunofluorescence
8
protein expression
8
antibody suitable
8
early-stage zebrafish
8
zebrafish
5
immunohistochemistry
4
immunofluorescence immunohistochemistry
4
immunohistochemistry cryosectioned
4
cryosectioned zebrafish
4

Similar Publications

Novel variants of FSIP2 and SPEF2 cause varying degrees of spermatozoa damage in MMAF patients and favorable ART outcomes.

J Assist Reprod Genet

January 2025

NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.

Purpose: This study identified novel variants of the FSIP2 and SPEF2 genes in multiple morphological abnormalities of the sperm flagella (MMAF) patients and to investigate the potential effect of variations on male infertility and assisted reproductive outcomes.

Methods: Whole-exome sequencing was performed in 106 Chinese MMAF patients. The discovered variants were evaluated in silico and confirmed by Sanger sequencing.

View Article and Find Full Text PDF

This study reveals the anti-tyrosinase activity of Ganoderma formosanum extracts, pinpointing compounds including gluconic acid, mesalamine, L-pyroglutamic acid, esculetin, 5-hydroxyindole, and salicylic acid, as effective melanin production inhibitors in melanoma cells and zebrafish embryos. Furthermore, multiple molecular docking simulations provided insights into interactions between the identified compounds and tyrosinase, increasing binding affinity up to -16.36 kcal/mol.

View Article and Find Full Text PDF

ScarTrace is a CRISPR/Cas9-based genetic lineage tracing method that allows for uniquely barcoding the DNA of single cells at a target GFP sequence during developing zebrafish embryos. Single cells from barcoded adult zebrafish can be isolated from various tissues (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Modern live imaging techniques, such as light-sheet fluorescence microscopy (LSFM), allow for detailed lineage tracing of cells, revealing their development and behavior in real time.
  • LSFM enables imaging of whole organisms over extended periods while minimizing damage to the specimens, significantly enhancing our understanding of cellular dynamics.
  • The chapter outlines how to prepare LSFM datasets and introduces three software platforms (MaMuT, Mastodon, and TrackMate) for tracking cell lineages in a crustacean model, Parhyale hawaiensis, through various tracking methods.
View Article and Find Full Text PDF

Early embryos display a remarkable ability to regulate tissue patterning in response to changes in tissue size. However, it is not clear whether this ability continues into post-gastrulation stages. Here, we performed targeted removal of dorsal progenitors in the zebrafish tailbud using multiphoton ablation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!