Within-plant heterogeneity in fecundity and herbivory induced by localized DNA hypomethylation in the perennial herb Helleborus foetidus.

Am J Bot

Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain.

Published: June 2019

AI Article Synopsis

Article Abstract

Premise: Phenotypic heterogeneity of reiterated, homologous structures produced by individual plants has ecological consequences for plants and their animal consumers. This paper examines experimentally the epigenetic mosaicism hypothesis, which postulates that within-plant variation in traits of reiterated structures may partly arise from different parts of the same genetic individual differing in patterns or extent of genomic DNA methylation.

Methods: Leaves of paired ramets borne by field-growing Helleborus foetidus plants were infiltrated periodically over the entire flowering period with either a water solution of the demethylating agent zebularine or just water as the control. The effects of the zebularine treatment were assessed by quantifying genome-wide DNA cytosine methylation in leaves and monitoring inflorescence growth and flower production, number of ovules per flower, pollination success, fruit set, seed set, seed size, and distribution of sap-feeding insects.

Results: Genomic DNA from leaves in zebularine-treated ramets was significantly less methylated than DNA from leaves in control ones. Inflorescences in treated ramets grew smaller and produced fewer flowers, with fewer ovules and lower follicle and seed set, but did not differ from inflorescences in untreated ramets in pollination success or seed size. The zebularine treatment influenced the within-plant distribution of sap-feeding insects.

Conclusions: Experimental manipulation of genomic DNA methylation level in leaves of wild-growing H. foetidus plants induced considerable within-plant heterogeneity in phenotypic (inflorescences, flowers, fecundity) and ecologically relevant traits (herbivore distribution), which supports the hypothesis that epigenetic mosaicism may partly account for within-plant variation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajb2.1291DOI Listing

Publication Analysis

Top Keywords

genomic dna
12
within-plant heterogeneity
8
helleborus foetidus
8
epigenetic mosaicism
8
within-plant variation
8
foetidus plants
8
zebularine treatment
8
pollination success
8
set seed
8
seed set
8

Similar Publications

Background And Objectives: Breast cancers (BCs) of patients with paraneoplastic neurologic syndromes and anti-Yo antibodies (Yo-PNS) overexpress human epidermal growth factor receptor 2 (HER2) and display genetic alterations and overexpression of the Yo-onconeural antigens. They are infiltrated by an unusual proportion of B cells. We investigated whether these features were also observed in patients with PNS and anti-Ri antibodies (Ri-PNS).

View Article and Find Full Text PDF

The novel allele HLA-DPB1*1617:01 differs from HLA-DPB1*05:01:01:01 by one non-synonymous nucleotide substitution in exon 2.

View Article and Find Full Text PDF

Novel Allele HLA-B*52:130, Identified by Next-Generation Sequencing.

HLA

January 2025

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Medical University, Moscow, Russia.

The new HLA-B*52:130 allele showed one nonsynonymous nucleotide difference compared to the HLA-B*52:01:01:01 allele in codon 170.

View Article and Find Full Text PDF

Barcoded Hybrids of Extracellular Vesicles and Lipid Nanoparticles for Multiplexed Analysis of Tissue Distribution.

Adv Sci (Weinh)

January 2025

Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 43150, Sweden.

Targeted delivery of therapeutic agents is a persistent challenge in modern medicine. Recent efforts in this area have highlighted the utility of extracellular vesicles (EVs) as drug carriers, given that they naturally occur in bloodstream and tissues, and can be loaded with a wide range of therapeutic molecules. However, biodistribution and tissue tropism of EVs remain difficult to study systematically.

View Article and Find Full Text PDF

The novel allele HLA-HLA-B*40:02:39 differs from HLA-B*40:02:01:01 by one synonymous nucleotide substitution in exon 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!