Importance: An intraoperative higher level of positive end-expiratory positive pressure (PEEP) with alveolar recruitment maneuvers improves respiratory function in obese patients undergoing surgery, but the effect on clinical outcomes is uncertain.
Objective: To determine whether a higher level of PEEP with alveolar recruitment maneuvers decreases postoperative pulmonary complications in obese patients undergoing surgery compared with a lower level of PEEP.
Design, Setting, And Participants: Randomized clinical trial of 2013 adults with body mass indices of 35 or greater and substantial risk for postoperative pulmonary complications who were undergoing noncardiac, nonneurological surgery under general anesthesia. The trial was conducted at 77 sites in 23 countries from July 2014-February 2018; final follow-up: May 2018.
Interventions: Patients were randomized to the high level of PEEP group (n = 989), consisting of a PEEP level of 12 cm H2O with alveolar recruitment maneuvers (a stepwise increase of tidal volume and eventually PEEP) or to the low level of PEEP group (n = 987), consisting of a PEEP level of 4 cm H2O. All patients received volume-controlled ventilation with a tidal volume of 7 mL/kg of predicted body weight.
Main Outcomes And Measures: The primary outcome was a composite of pulmonary complications within the first 5 postoperative days, including respiratory failure, acute respiratory distress syndrome, bronchospasm, new pulmonary infiltrates, pulmonary infection, aspiration pneumonitis, pleural effusion, atelectasis, cardiopulmonary edema, and pneumothorax. Among the 9 prespecified secondary outcomes, 3 were intraoperative complications, including hypoxemia (oxygen desaturation with Spo2 ≤92% for >1 minute).
Results: Among 2013 adults who were randomized, 1976 (98.2%) completed the trial (mean age, 48.8 years; 1381 [69.9%] women; 1778 [90.1%] underwent abdominal operations). In the intention-to-treat analysis, the primary outcome occurred in 211 of 989 patients (21.3%) in the high level of PEEP group compared with 233 of 987 patients (23.6%) in the low level of PEEP group (difference, -2.3% [95% CI, -5.9% to 1.4%]; risk ratio, 0.93 [95% CI, 0.83 to 1.04]; P = .23). Among the 9 prespecified secondary outcomes, 6 were not significantly different between the high and low level of PEEP groups, and 3 were significantly different, including fewer patients with hypoxemia (5.0% in the high level of PEEP group vs 13.6% in the low level of PEEP group; difference, -8.6% [95% CI, -11.1% to 6.1%]; P < .001).
Conclusions And Relevance: Among obese patients undergoing surgery under general anesthesia, an intraoperative mechanical ventilation strategy with a higher level of PEEP and alveolar recruitment maneuvers, compared with a strategy with a lower level of PEEP, did not reduce postoperative pulmonary complications.
Trial Registration: ClinicalTrials.gov Identifier: NCT02148692.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582260 | PMC |
http://dx.doi.org/10.1001/jama.2019.7505 | DOI Listing |
Front Physiol
December 2024
Department of Medical Physics and Medical Informatics, University of Szeged, Szeged, Hungary.
Introduction: Cerebral ischemia leads to multiple organ dysfunctions, with the lungs among the most severely affected. Although adverse pulmonary consequences contribute significantly to reduced life expectancy after stroke, the impact of global or focal cerebral ischemia on respiratory mechanical parameters remains poorly understood.
Methods: Rats were randomly assigned to undergo surgery to induce permanent global cerebral ischemia (2VO) or focal cerebral ischemia (MCAO), or to receive a sham operation (SHAM).
Ann Ital Chir
December 2024
Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225002 Yangzhou, Jiangsu, China.
Aim: Intraoperative lung-protective ventilation strategies (LPVS) have been shown to improve lung oxygenation and prevent postoperative pulmonary problems in surgical patients. However, the application of positive end-expiratory pressure (PEEP)-based LPVS in emergency traumatic brain injury (TBI) has not been thoroughly explored. The purpose of this study is to evaluate the effects of drive pressure-guided individualized PEEP on perioperative pulmonary oxygenation, postoperative pulmonary complications, and recovery from neurological injury in patients with TBI.
View Article and Find Full Text PDFBackground: To evaluate the influence of sodium bicarbonate Ringer's solution (BRS) combined with positive end-expiratory pressure (PEEP) on the internal environment in patients who have undergone laparoscopic bariatric surgery.
Methods: A total of 128 patients undergoing laparoscopic bariatric surgery were randomly divided into the control group (group C), the PEEP group (group P), the BRS group (group B), and the BRS combined with the PEEP group (group BP). The results of arterial blood gas analysis, including pH value, base excess (BE), concentrations of electrolyte, and lactate (Lac) were documented before intravenous infusion (T0) and 5 min after the surgery (T1).
J Clin Anesth
December 2024
Hospices Civils de Lyon, Département d'anesthésie, Hôpital Femme Mère Enfant, F - 69500 Bron, France; Agressions Pulmonaires et Circulatoires dans le Sepsis (APCSe), VetAgro Sup, Universités de Lyon, F-69280 Marcy l'Etoile, France. Electronic address:
Study Objective: To evaluate the impact of positive end-expiratory pressure (PEEP) with or without pressure support ventilation (PSV) on the lung volume and the ventilation distribution during inhalational induction of anesthesia in children.
Design: Prospective observational clinical pilot-study.
Setting: University Children's Hospital of Lyon, France.
Intensive Care Med Exp
December 2024
Division of Intensive Care, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, Geneva, Switzerland.
Background: Patients with brain damage often require mechanical ventilation. Although lung-protective ventilation is recommended, the application of increased positive end-expiratory pressure (PEEP) has been associated with elevated intracranial pressure (ICP) due to altered cerebral venous return. This study investigates the effects of flow-controlled ventilation (FCV) using negative end-expiratory pressures (NEEP), on cerebral hemodynamics in a swine model of intracranial hypertension.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!