Study Design: Literature review.

Objective: To provide an overview of the recent advances in spinal oncology, emphasizing the key role of the surgeon in the treatment of patients with spinal metastatic tumors.

Methods: Literature review.

Results: Therapeutic advances led to longer survival times among cancer patients, placing significant emphasis on durable local control, optimization of quality of life, and daily function for patients with spinal metastatic tumors. Recent integration of modern diagnostic tools, precision oncologic treatment, and widespread use of new technologies has transformed the treatment of spinal metastases. Currently, multidisciplinary spinal oncology teams include spinal surgeons, radiation and medical oncologists, pain and rehabilitation specialists, and interventional radiologists. Consistent use of common language facilitates communication, definition of treatment indications and outcomes, alongside comparative clinical research. The main parameters used to characterize patients with spinal metastases include functional status and health-related quality of life, the spinal instability neoplastic score, the epidural spinal cord compression scale, tumor histology, and genomic profile.

Conclusions: Stereotactic body radiotherapy revolutionized spinal oncology through delivery of durable local tumor control regardless of tumor histology. Currently, the major surgical indications include mechanical instability and high-grade spinal cord compression, when applicable, with surgery providing notable improvement in the quality of life and functional status for appropriately selected patients. Surgical trends include less invasive surgery with emphasis on durable local control and spinal stabilization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6512191PMC
http://dx.doi.org/10.1177/2192568219830323DOI Listing

Publication Analysis

Top Keywords

spinal
12
spinal oncology
12
patients spinal
12
durable local
12
quality life
12
spinal metastatic
8
emphasis durable
8
local control
8
spinal metastases
8
functional status
8

Similar Publications

Fracture Prevention with Infrequent Zoledronate in Women 50 to 60 Years of Age.

N Engl J Med

January 2025

From the Department of Medicine, University of Auckland, Auckland, New Zealand (M.J.B., Z.N., A.M., C.G., V.P., B.M., A.G., I.R.R., G.G., A.H.); the Department of Psychology, Stanford University, Stanford, CA (C.G.); and the Department of Radiology, Starship Hospital, Auckland, New Zealand (S.B.).

Background: Zoledronate prevents fractures in older women when administered every 12 to 18 months, but its effects on bone density and bone turnover persist beyond 5 years. Whether infrequent zoledronate administration would prevent vertebral fractures in early postmenopausal women is unknown.

Methods: We conducted a 10-year, prospective, double-blind, randomized, placebo-controlled trial involving early postmenopausal women (50 to 60 years of age) with bone mineral density T scores lower than 0 and higher than -2.

View Article and Find Full Text PDF

Background: An accurate knowledge of a patient's risk of cord-level intraoperative neuromonitoring (IONM) data loss is important for an informed decision-making process prior to deformity correction, but no prediction tool currently exists.

Methods: A total of 1,106 patients with spinal deformity and 205 perioperative variables were included. A stepwise machine-learning (ML) approach using random forest (RF) analysis and multivariable logistic regression was performed.

View Article and Find Full Text PDF

Purpose: We aimed to investigate the role of gallic acid treatment on spinal cord tissues after spinal cord injury (SCI) and its relationship with endoplasmic reticulum (ER) stress by histochemical, immunohistochemical, and in-silico techniques.

Methods: Thirty female Wistar albino rats were divided into three groups: sham, SCI, and SCI+gallic acid. SCI was induced by dropping a 15-g weight onto the exposed T10-T11 spinal cord segment.

View Article and Find Full Text PDF

Prior knowledge changes how the brain processes sensory input. Whether knowledge influences initial sensory processing upstream of the brain, in the spinal cord, is unknown. Studying electric potentials recorded invasively and noninvasively from the human spinal cord at millisecond resolution, we find that the cord generates electric potentials at 600 hertz that are modulated by prior knowledge about the time of sensory input, as early as 13 to 16 milliseconds after stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!