The identification of biomarker signatures in omics molecular profiling is usually performed to predict outcomes in a precision medicine context, such as patient disease susceptibility, diagnosis, prognosis, and treatment response. To identify these signatures, we have developed a biomarker discovery tool, called BioDiscML. From a collection of samples and their associated characteristics, i.e., the biomarkers (e.g., gene expression, protein levels, clinico-pathological data), BioDiscML exploits various feature selection procedures to produce signatures associated to machine learning models that will predict efficiently a specified outcome. To this purpose, BioDiscML uses a large variety of machine learning algorithms to select the best combination of biomarkers for predicting categorical or continuous outcomes from highly unbalanced datasets. The software has been implemented to automate all machine learning steps, including data pre-processing, feature selection, model selection, and performance evaluation. BioDiscML is delivered as a stand-alone program and is available for download at https://github.com/mickaelleclercq/BioDiscML.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532608PMC
http://dx.doi.org/10.3389/fgene.2019.00452DOI Listing

Publication Analysis

Top Keywords

feature selection
12
machine learning
12
biomarker discovery
8
large-scale automatic
4
automatic feature
4
selection
4
selection biomarker
4
discovery high-dimensional
4
high-dimensional omics
4
omics data
4

Similar Publications

Nanoencapsulated Optical Fiber-Based PEC Microelectrode: Highly Sensitive and Specific Detection of NT-proBNP and Its Implantable Performance.

Anal Chem

January 2025

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) describes liver diseases caused by the accumulation of triglycerides in hepatocytes (steatosis) as well as the resulting inflammation and fibrosis. Previous studies have demonstrated that accumulation of fat in visceral adipose tissue compartments and the liver is associated with alterations in the circulating levels of some amino acids, notably glutamate. This study aimed to investigate the associations between circulating amino acids, particularly glutamate, and MASLD.

View Article and Find Full Text PDF

Unlabelled: Motivated behaviors are regulated by distributed forebrain networks. Traditional approaches have often focused on individual brain regions and connections that do not capture the topographic organization of forebrain connectivity. We performed co-injections of anterograde and retrograde tract tracers in rats to provide novel high-spatial resolution evidence of topographic connections that elaborate a previously identified closed-loop forebrain circuit implicated in affective and motivational processes.

View Article and Find Full Text PDF

Unlabelled: To overcome the paucity of known tumor-specific surface antigens in pediatric high-grade glioma (pHGG), we contrasted splicing patterns in pHGGs and normal brain samples. Among alternative splicing events affecting extracellular protein domains, the most pervasive alteration was the skipping of ≤30 nucleotide-long microexons. Several of these skipped microexons mapped to L1-IgCAM family members, such as .

View Article and Find Full Text PDF

Cyclin F, a non-canonical member of the cyclin protein family, plays a critical role in regulating the precise transitions of cell-cycle events. Unlike canonical cyclins, which bind and activate cyclin-dependent kinases (CDKs), Cyclin F functions as a substrate receptor protein within the Skp1-Cullin-F box (SCF) E3 ubiquitin ligase complex, enabling the ubiquitylation of target proteins. The structural features that distinguish Cyclin F as a ligase adaptor and the mechanisms underlying its selective substrate recruitment over Cyclin A, which functions in complex with CDK2 at a similar time in the cell cycle, remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!