Objective: Argininosuccinate lyase (ASL) gene mutations account for argininosuccinic aciduria (ASA). This study aimed to design a minigene construct of ASL gene in order to investigate the impact of variants on splicing.
Methods: The peripheral blood samples were collected from the family members, and genomic DNA was extracted for gene diagnosis using the total exon sequencing method. The novel mutation gene was cloned into pEGFP-C1 vector, and the pathogenicity of the mutation was examined in cultured cells .
Results: The clinical diagnosis of the proband as ASA was clear. Two pathogenic mutations, c.281G>T (p.Arg94Leu) and c.208-15 T>A were detected in the ASL gene, and the two mutations had not been reported. The minigene expression confirmed that c.208-15 T>A could cause aberrant splicing, resulting in the retention of 13 bp in intron 2 to exon 3.
Conclusion: Two new pathogenic mutations of ASL gene, c.208-15 T>A and c.281G>T, were found in an ASA family, which enriches the mutational profile of the ASL gene and provides a basis for genetic diagnosis of ASA. Minigenes are optimal approaches to determine whether the intron mutation can cause aberrant splicing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533879 | PMC |
http://dx.doi.org/10.3389/fgene.2019.00436 | DOI Listing |
Cancers (Basel)
January 2025
Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00122 Rome, Italy.
Menin (MEN1) is a well-recognized powerful tumor promoter in acute leukemias (AL) with KMT2A rearrangements (KMT2Ar, also known as MLL) and mutant nucleophosmin 1 (NPM1m) acute myeloid leukemia (AML). MEN1 is essential for sustaining leukemic transformation due to its interaction with wild-type KMT2A and KMT2A fusion proteins, leading to the dysregulation of KMT2A target genes. MEN1 inhibitors (MIs), such as revumenib, ziftomenib, and other active small molecules, represent a promising new class of therapies currently under clinical development.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
Targeting DNA damage response (DDR) pathways represents one of the principal approaches in cancer therapy. However, defects in DDR mechanisms, exhibited by various tumors, can also promote tumor progression and resistance to therapy, negatively impacting patient survival. Therefore, identifying new molecules from natural extracts could provide a powerful source of novel compounds for cancer treatment strategies.
View Article and Find Full Text PDFMonaldi Arch Chest Dis
December 2024
Cardiology Division, Regina Montis Regalis Hospital, ASLCN1, Mondovì.
We presented a case of a 49-year-old presenting with atypical chest pain and hypertrophic phenotype cardiomyopathy without coronary artery disease. At cardiac magnetic resonance (CMR), the left ventricle was of normal volumes and preserved global ejection fraction with an asymmetric wall hypertrophy. The evaluation of native myocardial T1 has been calculated at an average global value of 924 ms, compatible with hypertrophic phenotype cardiomyopathy with reduced native T1 values as observed in Anderson-Fabry disease.
View Article and Find Full Text PDFPathologica
October 2024
Department of Public Health, University of Naples Federico II, Naples, Italy.
Objective: ALK, ROS1, NTRK, and RET gene fusions and MET exon 14 skipping alterations represent fundamental predictive biomarkers for advanced non-small cell lung cancer (NSCLC) patients to ensure the best treatment choice. In this scenario, RNA-based NGS approach has emerged as an extremely useful tool for detecting these alterations. In this study, we report our NGS molecular records on ALK, ROS1, NTRK, and RET gene fusions and MET exon 14 skipping alterations detected by using a narrow RNA-based NGS panel, namely SiRe fusion.
View Article and Find Full Text PDFPediatr Rep
December 2024
Pediatric and Rare Diseases Clinic, Microcitemico Hospital "A. Cao", Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy.
Background: Houge-Janssens syndrome 1 is a condition with onset in early childhood caused by heterozygous pathogenic variants in the gene, which encodes a B56 regulatory subunit of the serine/threonine protein phosphatase 2A (PP2A). There is evidence that the PP2A-PPP2R5D complex is involved in regulating the phosphatidylinositol 3-kinase (PI3K)/AKT signalling pathway, which is crucial for several cellular processes, including the pathogenesis and progression of haemangiomas.
Case Presentation: We report the first -related neurodevelopmental disorder case from Sardinia, a child with transient hypoglycaemia, facial dysmorphisms, and multiple haemangiomas.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!