AI Article Synopsis

  • The energy balance in vertebrates is controlled by the difference between the energy they consume through food and the energy they expend, with the gastrointestinal (GI) tract playing a key role in digestion and nutrient absorption.
  • GI motility, which varies between fasting and digesting states, is influenced by the contractions of smooth muscles, neurons, and hormones like ghrelin (GHRL) and motilin (MLN), which regulate appetite and energy homeostasis.
  • While GHRL is found in many vertebrates and has various physiological roles, MLN is more limited in its distribution and action, being present mainly in some fish, birds, and mammals, leading to a focus on their effects on GI tract contractility across species.

Article Abstract

The energy balance of vertebrates is regulated by the difference in energy input and energy expenditure. Generally, most vertebrates obtain their energy from nutrients of foods through the gastrointestinal (GI) tract. Therefore, food intake and following food digestion, including motility of the GI tract, secretion and absorption, are crucial physiological events for energy homeostasis. GI motility changes depending on feeding, and GI motility is divided into fasting (interdigestive) and postprandial (digestive) contraction patterns. GI motility is controlled by contractility of smooth muscles of the GI tract, extrinsic and intrinsic neurons (motor and sensory) and some hormones. In mammals, ghrelin (GHRL) and motilin (MLN) stimulate appetite and GI motility and contribute to the regulation of energy homeostasis. GHRL and MLN are produced in the mucosal layer of the stomach and upper small intestine, respectively. GHRL is a multifunctional peptide and is involved in glucose metabolism, endocrine/exocrine functions and cardiovascular and reproductive functions, in addition to feeding and GI motility in mammals. On the other hand, the action of MLN is restricted and species such as rodentia, including mice and rats, lack MLN peptide and its receptor. From a phylogenetic point of view, GHRL and its receptor GHS-R1a have been identified in various vertebrates, and their structural features and various physiological functions have been revealed. On the other hand, MLN or MLN-like peptide (MLN-LP) and its receptors have been found only in some fish, birds and mammals. Here, we review the actions of GHRL and MLN with a focus on contractility of the GI tract of species from fish to mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533539PMC
http://dx.doi.org/10.3389/fendo.2019.00278DOI Listing

Publication Analysis

Top Keywords

vertebrates energy
8
energy homeostasis
8
feeding motility
8
ghrl mln
8
motility
7
energy
6
mln
6
ghrl
5
regulation gastrointestinal
4
gastrointestinal motility
4

Similar Publications

Protein dynamics underlies strong temperature dependence of heat receptors.

Proc Natl Acad Sci U S A

January 2025

Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214.

Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals.

View Article and Find Full Text PDF

Collaborative management partnerships (CMPs) between state wildlife authorities and nonprofit conservation organizations to manage protected areas (PAs) have been used increasingly across Sub-Saharan Africa since the 2000s. They aim to attract funding, build capacity, and increase the environmental effectiveness of PAs. Our study documents the rise of CMPs, examines their current extent, and measures their effectiveness in protecting habitats.

View Article and Find Full Text PDF

Bioabsorbable internal fixation is a well-accepted modality that is especially suitable for application in craniosynostosis. When first introduced, high rates of adverse tissue reactions were observed that have since been ameliorated with more biocompatible polymer formulations. However, the phenomenon has not entirely disappeared, and such reactions remain vexing.

View Article and Find Full Text PDF

Background: This study investigates the role and efficacy of acupuncture combined with rehabilitation therapy during the recovery phase of patients with traumatic spinal cord injury. Patients hospitalized in the acupuncture department of our center between December 1, 2019, and December 1, 2021, were enrolled.

Methods: Participants were divided into an observation group (acupuncture and rehabilitation therapy) and a control group (rehabilitation therapy alone) based on their treatment sequence.

View Article and Find Full Text PDF

Cardiac Regeneration in Adult Zebrafish: A Review of Signaling and Metabolic Coordination.

Curr Cardiol Rep

January 2025

Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India.

Purpose Of Review: This review investigates how post-injury cellular signaling and energy metabolism are two pivotal points in zebrafish's cardiomyocyte cell cycle re-entry and proliferation. It seeks to highlight the probable mechanism of action in proliferative cardiomyocytes compared to mammals and identify gaps in the current understanding of metabolic regulation of cardiac regeneration.

Recent Findings: Metabolic substrate changes after birth correlate with reduced cardiomyocyte proliferation in mammals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!