Intracranial lesion development is a recognized complication in adults treated with extracorporeal membrane oxygenation (ECMO) and is associated with increased mortality. As neurological assessment during ECMO treatment remains challenging, protein biomarkers of cerebral injury could provide an opportunity to detect intracranial lesion development at an early stage. The aim of this study was to determine if serially sampled S100B could be used to detect intracranial lesion development during ECMO treatment. We conducted an observational cohort study of all patients treated with ECMO at ECMO Center Karolinska (Karolinska University Hospital, Stockholm, Sweden) between January and August 2018, excluding patients who did not undergo a computerized tomography scan (CT) during treatment. S100B was prospectively collected at hospital admission and then once daily. The primary end-point was any type of CT verified intracranial lesion. Receiver operating characteristics (ROC) curves and Cox proportional hazards models were employed. Twenty-nine patients were included, of which 15 (52%) developed an intracranial lesion and exhibited higher levels of S100B overall. S100B had a robust association with intracranial lesion development, especially during the first 200 hours following admission. The best area-under-curve (AUC) to predict intracranial lesion development was 40 and 140 hours following ECMO initiation, were a S100B level of 0.69μg/L had an AUC of 0.81 (0.628-0.997). S100B levels were markedly increased following the development of intracranial hemorrhage. Serial serum S100B samples in ECMO patients were both significantly elevated and had an increasing trajectory in patients developing intracranial lesions. Larger prospective trials are warranted to validate these findings and to ascertain their clinical utility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532588PMC
http://dx.doi.org/10.3389/fneur.2019.00512DOI Listing

Publication Analysis

Top Keywords

intracranial lesion
32
lesion development
24
intracranial
10
lesion
8
extracorporeal membrane
8
membrane oxygenation
8
ecmo treatment
8
detect intracranial
8
development
7
ecmo
7

Similar Publications

Expression of TNF-α, VEGF-A and Microvessel Density in Cerebral Alveolar Echinococcosis and Their Correlation with Perilesional Brain Edema.

Acta Parasitol

January 2025

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830000, China.

Alveolar echinococcosis (AE) is an infrequent zoonosis caused by Echinococcus multilocularis with a high degree of disability and mortality. Metastatic cerebral alveolar echinococcosis (CAE) is very rare and the lesions could lead to severe perilesional brain edema (PLBE) and subsequent uncontrollable intracranial hypertension. In this study, we sought to determine the expression of edema-associated factors in CAE lesions and their associations with PLBE.

View Article and Find Full Text PDF

Ischemic stroke is one of the major emergency diseases leading to death and disability worldwide, characterized by its acute onset and the urgent need for prompt medical intervention to reduce mortality and long-term disability. Chronic terminal internal carotid artery and/or middle cerebral artery occlusion (CTI/MCAO) is an important subtype of intracranial artery occlusive disease. The superficial temporal artery-to-MCA (STA-MCA) bypass has been proposed to improve cerebral blood flow (CBF) and cerebrovascular reserve (CVR), potentially enhancing neurological outcomes.

View Article and Find Full Text PDF

Background: Acute and critical neurological diseases are often accompanied with elevated intracranial pressure (ICP), leading to insufficient cerebral perfusion, which may cause severe secondary lesion. Existing ICP monitoring techniques often fail to effectively meet the demand for real-time noninvasive ICP monitoring and warning. This study aimed to explore the use of electrical impedance tomography (EIT) to provide real-time early warning of elevated ICP by observing cerebral perfusion.

View Article and Find Full Text PDF

Azygos Vein Stenosis in Frontotemporal Dementia Sagging Brain Syndrome.

AJNR Am J Neuroradiol

January 2025

Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology (J.D.S., Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.

Background And Purpose: Symptoms indistinguishable from behavioral-variant frontotemporal dementia (bvFTD) can develop in patients with spontaneous intracranial hypotension associated with severe brain sagging. An underlying spinal CSF leak can be identified in only a minority of these patients and the success rate of nondirected treatments, such as epidural blood patching and dural reduction surgery, is low. The disability associated with bvFTD sagging brain syndrome is high and, because of the importance of the venous system in the pathophysiology of CSF leaks in general, we have investigated the systemic venous circulation in those patients with recalcitrant symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!