The search for effective strategies to inhibit tumorigenesis remains one of the most relevant scientific challenges. Among the most promising approaches is the direct modulation of the function of short non-coding RNAs, particularly miRNAs. These molecules are propitious targets for anticancer therapy, since they perform key regulatory roles in a variety of signaling cascades related to cell proliferation, apoptosis, migration, and invasion. The development of pathological states is often associated with deregulation of miRNA expression. The present review describes in detail the strategies aimed at modulating miRNA activity that invoke antisense oligonucleotide construction, such as small RNA zippers, miRNases (miRNA-targeted artificial ribonucleases), miRNA sponges, miRNA masks, anti-miRNA oligonucleotides, and synthetic miRNA mimics. The broad impact of developed miRNA-based therapeutics on the various events of tumorigenesis is also discussed. Above all, the focus of this review is to evaluate the results of the combined application of different miRNA-based agents and chemotherapeutic drugs for the inhibition of tumor development. Many studies indicate a considerable increase in the efficacy of anticancer therapy as a result of additive or synergistic effects of simultaneously applied therapies. Different drug combinations, such as a cocktail of antisense oligonucleotides or multipotent miRNA sponges directed at several oncogenic microRNAs belonging to the same/different miRNA families, a mixture of anti-miRNA oligonucleotides and cytostatic drugs, and a combination of synthetic miRNA mimics, have a more complex and profound effect on the various events of tumorigenesis as compared with treatment with a single miRNA-based agent or chemotherapeutic drug. These data provide strong evidence that the simultaneous application of several distinct strategies aimed at suppressing different cellular processes linked to tumorigenesis is a promising approach for cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531850PMC
http://dx.doi.org/10.3389/fphar.2019.00488DOI Listing

Publication Analysis

Top Keywords

anticancer therapy
8
mirna
8
strategies aimed
8
mirna sponges
8
anti-mirna oligonucleotides
8
synthetic mirna
8
mirna mimics
8
events tumorigenesis
8
tumorigenesis
5
enhanced inhibition
4

Similar Publications

Introduction: Antibody-drug conjugates (ADCs) are a rapidly evolving class of anti-cancer drugs with a significant impact on management of hematological malignancies including diffuse large B-cell lymphoma (DLBCL). ADCs combine a cytotoxic drug (a.k.

View Article and Find Full Text PDF

NFKB1 as a key player in Tumor biology: from mechanisms to therapeutic implications.

Cell Biol Toxicol

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.

NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.

View Article and Find Full Text PDF

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

Sophaline B inhibits non-small cell lung cancer by activating NLRP3/caspase-1/GSDMD-dependent pyroptosis and PI3K/AKT/mTOR-mediated autophagy.

Nat Prod Res

January 2025

Institute of Biopharmaceutical and Health Engineering, State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Gene and Antibody Therapy, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.

Sophaline B (SPB), extracted from the seeds of L., is a natural bioactive compound that effectively exerts antiviral activities against the hepatitis B virus. This is the first study to demonstrate that SPB exerts anti-tumor effects on NSCLC by inducing pyroptosis and autophagy.

View Article and Find Full Text PDF

Everolimus Through Plasmatic Concentrations in Cancer Patients: Prospective Longitudinal Observational Multicentric Study (DIANA-1 Project).

J Clin Med

December 2024

Pharmacy Department, Institut Català Oncologia (ICO), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet Llobregat, 08908 Barcelona, Spain.

Everolimus, an oral inhibitor of the mammalian target of rapamycin (mTOR), is actually used to prevent organ transplant rejection and treat metastatic breast, renal, and neuroendocrine cancers. Despite significant pharmacokinetic variability among patients, routine therapeutic drug monitoring (TDM) is not commonly used in oncology. The aim of this multicenter, prospective observational cohort study is to assess the prevalence of everolimus minimum concentration at a steady state (Cminss) falling outside the therapeutic range (10-26.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!