Sleep is a very critical process that constitutes up to one third of daytime of a healthy adult. It is known to be an active period where body and brain is refreshed for the next day. It is both part of a larger cycle, i.e., circadian rhythm, and has subcsycles in it, i.e., sleep stages. Although hemodynamics of these stages have been investigated especially in the last two decades, there are still points in the hemodynamics to be illuminated especially in terms of refreshment. This study aims to investigate refreshing property of sleep in terms of sleep stages using functional near-infrared spectroscopy (fNIRS) for measuring prefrontal cortex (PFC) hemodynamics. Nine healthy subjects slept in sleep laboratories, monitored by polysomnography and fNIRS before, during, and after night sleep. REM stage had lower oxyhemoglobin (HbO) and total hemoglobin (HbT) than the other sleep stages and wakefulness. Deoxyhemoglobin (HbR) did not differ between any stages. All sleep stages and wakefulness stage at the end of the sleep had higher HbO and lower HbR than the beginning of the sleep. HbT levels did not differ between the beginning and the end of the sleep for any stages. During REM sleep, PFC seems to get lower blood supply, possibly due to increased demand in other brain regions. Regardless of the stage, PFC has higher oxygenation toward the end of sleep, indicating refreshment. Overall, our brain seems to be on duty during sleep throughout the night for "cleaning" and "refreshing" itself. Hemodynamic changes from the beginning to end of sleep might be the indicator of this work. Thus, accordingly REM stage seems to be at a central point for this work.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6527902 | PMC |
http://dx.doi.org/10.3389/fnhum.2019.00160 | DOI Listing |
Narra J
December 2024
Division of Psychosomatic and Palliative, Department of Internal Medicine, Faculty of Medicine, Universitas Udayana, Bali, Indonesia.
The incidence of psychosomatic disorders is increasing in Indonesia, and therefore screening instruments that are culturally appropriate for the Indonesian population are needed. The aim of this study was to assess the validity and reliability of the Shatri Sinulingga psychosomatic test (SSPT) questionnaire as a screening instrument for psychosomatic disorders in Indonesia. An analytic descriptive cross-sectional study divided into two stages (questionnaire formulation and distribution through the Psikosom.
View Article and Find Full Text PDFPhysiol Meas
January 2025
Department of Electrical and Electronic Engineering (DIEE), University of Cagliari, Via Marengo, Cagliari, Sardegna, 09123, ITALY.
Heart rate variability (HRV) analysis during sleep plays a key role for understanding autonomic nervous system function and assessing cardiovascular health. The UNICA Sleep HRV analysis (UNICA-HRV) tool is a novel, open-source MATLAB tool designed to fill the gap in current HRV analysis tools. In particular, the integration of ECG and HRV data with hypnogram information, which illustrates the progression through the different sleep stages, ease the computation of HRV metrics in polysomnographic recordings.
View Article and Find Full Text PDFHeliyon
January 2025
School of Music, College of Fine Arts, University of Tehran, Tehran, Iran.
Sleep stages classification one of the essential factors concerning sleep disorder diagnoses, which can contribute to many functional disease treatments or prevent the primary cognitive risks in daily activities. In this study, A novel method of mapping EEG signals to music is proposed to classify sleep stages. A total of 4.
View Article and Find Full Text PDFStudy Objectives: Poor sleep may play a role in the risk of dementia. However, few studies have investigated the association between polysomnography (PSG)-derived sleep architecture and dementia incidence. We examined the relationship between sleep macro-architecture and dementia incidence across five US-based cohort studies from the Sleep and Dementia Consortium (SDC).
View Article and Find Full Text PDFHealth Inf Sci Syst
December 2025
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650504 Yunnan China.
For diagnosing mental health conditions and assessing sleep quality, the classification of sleep stages is essential. Although deep learning-based methods are effective in this field, they often fail to capture sufficient features or adequately synthesize information from various sources. For the purpose of improving the accuracy of sleep stage classification, our methodology includes extracting a diverse array of features from polysomnography signals, along with their transformed graph and time-frequency representations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!