A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Accurate nonrigid 3D human body surface reconstruction using commodity depth sensors. | LitMetric

Accurate nonrigid 3D human body surface reconstruction using commodity depth sensors.

Comput Animat Virtual Worlds

Department of Computer Science, School of Engineering and Applied Science, and Department of Pediatrics, School of Medicine and Health Sciences, Institute for Computer Graphics, The George Washington University, 800 22nd Street NW Suite 5830, Washington, DC 20052, USA.

Published: May 2018

In the last decade, 3D modeling techniques enjoyed a booming development in both hardware and software. High-end hardware generates high fidelity results, but the cost is prohibitive, whereas consumer-level devices generate plausible results for entertainment purposes but are not appropriate for medical uses. We present a cost-effective and easy-to-use 3D body reconstruction system using consumer-grade depth sensors, which provides reconstructed body shapes with a high degree of accuracy and reliability appropriate for medical applications. Our surface registration framework integrates the articulated motion assumption, global loop closure constraint, and a general as-rigid-as-possible deformation model. To enhance the reconstruction quality, we propose a novel approach to accurately infer skeletal joints from anatomical data using multimodality registration. We further propose a supervised predictive model to infer the skeletal joints for arbitrary subjects independent from anatomical data reference. A rigorous validation test has been conducted on real subjects to evaluate the reconstruction accuracy and repeatability. Our system has the potential to make accurate body surface scanning systems readily available for medical professionals and the general public. The system can be used to obtain additional health data derived from 3D body shapes, such as the percentage of body fat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541015PMC
http://dx.doi.org/10.1002/cav.1807DOI Listing

Publication Analysis

Top Keywords

body surface
8
depth sensors
8
appropriate medical
8
body shapes
8
infer skeletal
8
skeletal joints
8
anatomical data
8
body
6
accurate nonrigid
4
nonrigid human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!