Systems pharmacology is a novel framework for drug research that models traditional and innovative pharmacological parameters and provides the overall efficacy and safety profile of a drug across body systems and complex, non-linear, molecular interactions. Lithium chloride, a pharmacological compound approved for the therapy of psychiatric disorders, represents a poorly explored compound for the treatment of Alzheimer's disease (AD). Lithium has been shown to reduce downstream effects associated with the aberrant overactivation of certain molecular pathways, such as glycogen synthase kinase 3 subunit β (GSK3-β)-related pathways, involved in AD-related pathophysiology. It seems that overactivation and overexpression of GSK3-β lead to an impairment of long-term potentiation and amyloid-β induced neurotoxicity that can be normalized using lithium. Moreover, a growing body of evidence has demonstrated that lithium's GSK3-β inhibitory effect prevents tau phosphorylation in mouse models of tauopathies. Clinical data have been inconclusive, partly due to methodological limitations. The lack of studies exploring the dynamics of protein misfolding in AD and investigating the specific tau-isoforms appearing prior to the accumulation of neurofibrillary tangles calls for new and optimized clinical trials. Advanced computer modeling based on a formal implementation of quantitative parameters and basic enzymatic insights into a mechanism-based model would present a good start to tackle these non-linear interactions. This innovative approach will pave the way for developing "molecularly" biomarker-guided targeted therapies, i.e., treatments specifically adapted ("tailored") to the individual, consistently with the primary objectives and key conceptual points of precision medicine and precision pharmacology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-190197 | DOI Listing |
Sleep
January 2025
Complete HEOR Solutions (CHEORS), Chalfont, PA, USA.
Study Objectives: This study assessed the utilization of potentially inappropriate medications (PIM) including oral sedative-hypnotic and atypical antipsychotic (OSHAA), healthcare resource utilization (HCRU), and costs among elderly individuals with insomnia and in the subpopulation with Alzheimer's Disease (AD) who also had a diagnosis of insomnia.
Methods: Using claims database containing International Classification of Diseases, 10th Revision (ICD-10) codes, the cohort included individuals aged ≥ 65 with incident insomnia (EI, N=152,969) and AD insomnia subpopulation (ADI, N=4,888). Proportion of patients utilizing atypical antipsychotics or oral sedative-hypnotic medications, namely z-drugs, benzodiazepines, doxepin, Dual Orexin Receptor Antagonists (DORAs), and melatonin agonists, were assessed.
Clin Trials
January 2025
Department of Biostatistics, University of Florida, Gainesville, FL, USA.
Introduction: The sequential parallel comparison design has emerged as a valuable tool in clinical trials with high placebo response rates. To further enhance its efficiency and effectiveness, adaptive strategies, such as sample size adjustment and allocation ratio modification can be employed.
Methods: We compared the performance of Jennison and Turnbull's method and the Promising Zone approach for sample size adjustment in a two-phase sequential parallel comparison design study.
J Integr Neurosci
January 2025
Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China.
Background: Volume alterations in the parietal subregion have received less attention in Alzheimer's disease (AD), and their role in predicting conversion of mild cognitive impairment (MCI) to AD and cognitively normal (CN) to MCI remains unclear. In this study, we aimed to assess the volumetric variation of the parietal subregion at different cognitive stages in AD and to determine the role of parietal subregions in CN and MCI conversion.
Methods: We included 662 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 228 CN, 221 early MCI (EMCI), 112 late MCI (LMCI), and 101 AD participants.
J Integr Neurosci
January 2025
Department of General Medicine, The Second Affiliated Hospital of Dalian Medical University, 116023 Dalian, Liaoning, China.
Alzheimer's disease (AD) is a common central neurodegenerative disease disorder characterized primarily by cognitive impairment and non-cognitive neuropsychiatric symptoms that significantly impact patients' daily lives and behavioral functioning. The pathogenesis of AD remains unclear and current Western medicines treatment are purely symptomatic, with a singular pathway, limited efficacy, and substantial toxicity and side effects. In recent years, as research into AD has deepened, there has been a gradual increase in the exploration and application of medicinal plants for the treatment of AD.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico.
Alzheimer's disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently associated with significant adverse effects. Faced with this challenge and in line with advances in the understanding of the pathophysiology of this neurodegenerative condition, various innovative therapeutic strategies have been explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!