In this review, recent progress in understanding the direct effects of radiation on the structure and stability of collagen, the most abundant protein in the human body, and other proteins is surveyed. Special emphasis is placed on the triple-helical structure of collagen, as studied by means of collagen mimetic peptides. The emerging patterns are the dose dependence of radiation processes and their abundance, the crucial role of radicals in covalent-bond formation (crosslinking) or cleavage, and the influence of the radiation energy and nature. Future research should allow fundamental questions, such as charge transfer and fragmentation dynamics triggered by ionization, to be answered, as well as developing applications such as protein-based biomaterials, notably with properties controlled by irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.201900202 | DOI Listing |
J Am Chem Soc
January 2025
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
The trade-off between the performances of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) presents a challenge in designing high-performance aqueous rechargeable zinc-air batteries (a-r-ZABs) due to sluggish kinetics and differing reaction requirements. Accurate control of the atomic and electronic structures is crucial for the rational design of efficient bifunctional oxygen electrocatalysts. Herein, we designed a Sn-Co/RuO trimetallic oxide utilizing dual-active sites and tin (Sn) regulation strategy by dispersing Co (for ORR) and auxiliary Sn into the near-surface and surface of RuO (for OER) to enhance both ORR and OER performances.
View Article and Find Full Text PDFLangmuir
January 2025
Federal University of Itajubá, Itajubá-MG 37500-903, Brazil.
CuO/CeO and CuO/CeO-LaO catalysts, synthesized with varying CeO and LaO molar ratios (1:1, 1:2, and 2:1), were prepared via the hydrothermal method and tested in the water-gas shift reaction (150-350 °C). LaO addition altered structural properties, reducing surface area and copper dispersion. XANES and in situ XRD confirmed metallic Cu species during reduction and reaction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany.
Solid additives have garnered significant attention due to their numerous advantages over liquid additives. This study explores the potential of the green-fluorescent conjugated polymer denoted Atums Green as a solid additive in green-solvent-based PBDB-TF-T1:BTP-4F-12 solar cells. Even tiny amounts of Atums Green doping significantly improve the device performance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Zhengzhou University, Zhengzhou 450000, China.
Planar 1D photonic crystals (1DPhCs), owing to their photonic bandgaps (PBGs) formed by unique structural interference, are widely utilized in light protection applications. Multifunctional coatings that integrate various light management functions are highly desired. In this study, we present the fabrication of dual-PBG 1DPhCs with high reflectance in both the blue and near-infrared (NIR) regions.
View Article and Find Full Text PDFRadiographics
February 2025
Department of Medical Imaging, The Ottawa Hospital, 501 Smyth Rd, Ottawa, ON, Canada K1H 8L6 (D.V.F., J.L.); Department of Radiology, Radiation Oncology and Medical Physics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada (D.V.F., J.L.); Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (D.V.F., J.L.); and Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada (T.M.).
Formerly termed or , core muscle injury (CMI) encompasses abnormality of structures within the so-called core, which is essentially the hip, abdomen, and pubis. Compared with data on image-guided procedures of other joints, information regarding procedures performed to address CMI and other disorders of the pubic symphysis is lacking. These procedures can be daunting given the joint's small size, surrounding critical neurovascular structures, and three-dimensional anatomy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!